871 resultados para Panel data probit model
Resumo:
The purpose of this thesis is to study factors that explain the bilateral fiber trade flows. This is done by analyzing bilateral trade flows during 1990-2006. It will be studied also, whether there are differences between fiber types. This thesis uses a gravity model approach to study the trade flows. Gravity model is mostly used to study the aggregate data between trading countries. In this thesis the gravity model is applied to single fibers. This model is then applied to panel data set. Results from the regression show clearly that there are benefits in studying different fibers in separate. The effects differ considerably from each other. Furthermore, this thesis speaks for the existence of Linder’s effect in certain fiber types.
Resumo:
This paper intends to study whether financial liberalization tends to increase the likelihood of systemic banking crises. I used a sample of 79 countries with data spanning from 1973 to 2005 to run a panel probit model. I found that, if anything, financial liberalization as measured across seven different dimensions tends to decrease the probability of occurrence of a systemic banking crisis. I went further and did several robustness tests – used a conditional probit model, tested for different durations of liberalization impact and reduced the sample by considering only the first crisis event for each country. Main results still verified, proving the results’ robustness.
Resumo:
Empirical literature on the analysis of the efficiency of measures for reducing persistent government deficits has mainly focused on the direct explanation of deficit. By contrast, this paper aims at modeling government revenue and expenditure within a simultaneous framework and deriving the fiscal balance (surplus or deficit) equation as the difference between the two variables. This setting enables one to not only judge how relevant the explanatory variables are in explaining the fiscal balance but also understand their impact on revenue and/or expenditure. Our empirical results, obtained by using a panel data set on Swiss Cantons for the period 1980-2002, confirm the relevance of the approach followed here, by providing unambiguous evidence of a simultaneous relationship between revenue and expenditure. They also reveal strong dynamic components in revenue, expenditure, and fiscal balance. Among the significant determinants of public fiscal balance we not only find the usual business cycle elements, but also and more importantly institutional factors such as the number of administrative units, and the ease with which people can resort to political (direct democracy) instruments, such as public initiatives and referendum.
Resumo:
HE PROBIT MODEL IS A POPULAR DEVICE for explaining binary choice decisions in econometrics. It has been used to describe choices such as labor force participation, travel mode, home ownership, and type of education. These and many more examples can be found in papers by Amemiya (1981) and Maddala (1983). Given the contribution of economics towards explaining such choices, and given the nature of data that are collected, prior information on the relationship between a choice probability and several explanatory variables frequently exists. Bayesian inference is a convenient vehicle for including such prior information. Given the increasing popularity of Bayesian inference it is useful to ask whether inferences from a probit model are sensitive to a choice between Bayesian and sampling theory techniques. Of interest is the sensitivity of inference on coefficients, probabilities, and elasticities. We consider these issues in a model designed to explain choice between fixed and variable interest rate mortgages. Two Bayesian priors are employed: a uniform prior on the coefficients, designed to be noninformative for the coefficients, and an inequality restricted prior on the signs of the coefficients. We often know, a priori, whether increasing the value of a particular explanatory variable will have a positive or negative effect on a choice probability. This knowledge can be captured by using a prior probability density function (pdf) that is truncated to be positive or negative. Thus, three sets of results are compared:those from maximum likelihood (ML) estimation, those from Bayesian estimation with an unrestricted uniform prior on the coefficients, and those from Bayesian estimation with a uniform prior truncated to accommodate inequality restrictions on the coefficients.
Resumo:
Based on an behavioral equilibrium exchange rate model, this paper examines the determinants of the real effective exchange rate and evaluates the degree of misalignment of a group of currencies since 1980. Within a panel cointegration setting, we estimate the relationship between exchange rate and a set of economic fundamentals, such as traded-nontraded productivity differentials and the stock of foreign assets. Having ascertained the variables are integrated and cointegrated, the long-run equilibrium value of the fundamentals are estimated and used to derive equilibrium exchange rates and misalignments. Although there is statistical homogeneity, some structural differences were found to exist between advanced and emerging economies.
Resumo:
This paper examines the relationship between the level of public infrastructure and the level of productivity using panel data for the Spanish provinces over the period 1984-2004, a period which is particularly relevant due to the substantial changes occurring in the Spanish economy at that time. The underlying model used for the data analysis is based on the wage equation, which is one of a handful of simultaneous equations which when satisfied correspond to the short-run equilibrium of New Economic Geography theory. This is estimated using a spatial panel model with fixed time and province effects, so that unmodelled space and time constant sources of heterogeneity are eliminated. The model assumes that productivity depends on the level of educational attainment and the public capital stock endowment of each province. The results show that although changes in productivity are positively associated with changes in public investment within the same province, there is a negative relationship between productivity changes and changes in public investment in other regions.
Resumo:
The paper investigates the role of real exchange rate misalignment on long-run growth for a set of ninety countries using time series data from 1980 to 2004. We first estimate a panel data model (using fixed and random effects) for the real exchange rate, with different model specifications, in order to produce estimates of the equilibrium real exchange rate and this is then used to construct measures of real exchange rate misalignment. We also provide an alternative set of estimates of real exchange rate misalignment using panel cointegration methods. The variables used in our real exchange rate models are: real per capita GDP; net foreign assets; terms of trade and government consumption. The results for the two-step System GMM panel growth models indicate that the coefficients for real exchange rate misalignment are positive for different model specification and samples, which means that a more depreciated (appreciated) real exchange rate helps (harms) long-run growth. The estimated coefficients are higher for developing and emerging countries.
Resumo:
In this paper we investigate the ability of a number of different ordered probit models to predict ratings based on firm-specific data on business and financial risks. We investigate models based on momentum, drift and ageing and compare them against alternatives that take into account the initial rating of the firm and its previous actual rating. Using data on US bond issuing firms rated by Fitch over the years 2000 to 2007 we compare the performance of these models in predicting the rating in-sample and out-of-sample using root mean squared errors, Diebold-Mariano tests of forecast performance and contingency tables. We conclude that initial and previous states have a substantial influence on rating prediction.
Resumo:
This paper aims to estimate a translog stochastic frontier production function in the analysis of a panel of 150 mixed Catalan farms in the period 1989-1993, in order to attempt to measure and explain variation in technical inefficiency scores with a one-stage approach. The model uses gross value added as the output aggregate measure. Total employment, fixed capital, current assets, specific costs and overhead costs are introduced into the model as inputs. Stochasticfrontier estimates are compared with those obtained using a linear programming method using a two-stage approach. The specification of the translog stochastic frontier model appears as an appropriate representation of the data, technical change was rejected and the technical inefficiency effects were statistically significant. The mean technical efficiency in the period analyzed was estimated to be 64.0%. Farm inefficiency levels were found significantly at 5%level and positively correlated with the number of economic size units.
Resumo:
Panel data can be arranged into a matrix in two ways, called 'long' and 'wide' formats (LFand WF). The two formats suggest two alternative model approaches for analyzing paneldata: (i) univariate regression with varying intercept; and (ii) multivariate regression withlatent variables (a particular case of structural equation model, SEM). The present papercompares the two approaches showing in which circumstances they yield equivalent?insome cases, even numerically equal?results. We show that the univariate approach givesresults equivalent to the multivariate approach when restrictions of time invariance (inthe paper, the TI assumption) are imposed on the parameters of the multivariate model.It is shown that the restrictions implicit in the univariate approach can be assessed bychi-square difference testing of two nested multivariate models. In addition, commontests encountered in the econometric analysis of panel data, such as the Hausman test, areshown to have an equivalent representation as chi-square difference tests. Commonalitiesand differences between the univariate and multivariate approaches are illustrated usingan empirical panel data set of firms' profitability as well as a simulated panel data.
Resumo:
The objective of this paper is to examine whether informal labor markets affect the flows of Foreign Direct Investment (FDI), and also whether this effect is similar in developed and developing countries. With this aim, different public data sources, such as the World Bank (WB), and the United Nations Conference on Trade and Development (UNCTAD) are used, and panel econometric models are estimated for a sample of 65 countries over a 14 year period (1996-2009). In addition, this paper uses a dynamic model as an extension of the analysis to establish whether such an effect exists and what its indicators and significance may be.
Resumo:
The objective of this paper is to examine whether informal labor markets affect the flows of Foreign Direct Investment (FDI), and also whether this effect is similar in developed and developing countries. With this aim, different public data sources, such as the World Bank (WB), and the United Nations Conference on Trade and Development (UNCTAD) are used, and panel econometric models are estimated for a sample of 65 countries over a 14 year period (1996-2009). In addition, this paper uses a dynamic model as an extension of the analysis to establish whether such an effect exists and what its indicators and significance may be.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
The farm-level success of Bt-cotton in developing countries is well documented. However, the literature has only recently begun to recognise the importance of accounting for the effects of the technology on production risk, in addition to the mean effect estimated by previous studies. The risk effects of the technology are likely very important to smallholder farmers in the developing world due to their risk-aversion. We advance the emergent literature on Bt-cotton and production risk by using panel data methods to control for possible endogeneity of Bt-adoption. We estimate two models, the first a fixed-effects version of the Just and Pope model with additive individual and time effects, and the second a variation of the model in which inputs and variety choice are allowed to affect the variance of the time effect and its correlation with the idiosyncratic error. The models are applied to panel data on smallholder cotton production in India and South Africa. Our results suggest a risk-reducing effect of Bt-cotton in India, but an inconclusive picture in South Africa.