956 resultados para Pancreas -- physiology
Resumo:
Detection of variations in blood glucose concentrations by pancreatic beta-cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic beta-cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K(ATP) channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2-/- mice will be described, which indicate that this transporter is essential for glucose sensing by pancreatic beta-cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.
Resumo:
Transplantation of insulin secreting cells is regarded as a possible treatment for type 1 diabetes. One major difficulty in this approach is, however, that the transplanted cells are exposed to the patient's inflammatory and autoimmune environment, which originally destroyed their own beta-cells. Therefore, even if a good source of insulin-secreting cells can be identified for transplantation therapy, these cells need to be protected against these destructive influences. The aim of this project was to evaluate, using a clonal mouse beta-cell line, whether genetic engineering of protective genes could be a viable option to allow these cells to survive when transplanted into autoimmune diabetic mice. We demonstrated that transfer of the Bcl-2 anti-apoptotic gene and of several genes specifically interfering with cytokines intracellular signalling pathways, greatly improved resistance of the cells to inflammatory stresses in vitro. We further showed that these modifications did not interfere with the capacity of these cells to correct hyperglycaemia for several months in syngeneic or allogeneic streptozocin-diabetic mice. However, these cells were not protected against autoimmune destruction when transplanted into type 1 diabetic NOD mice. This suggests that in addition to inflammatory attacks by cytokines, autoimmunity very efficiently kills the transplanted cells, indicating that multiple protective mechanisms are required for efficient transplantation of insulin-secreting cells to treat type 1 diabetes.
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes.
Resumo:
The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88 +/- 0.5 mmol/L) than fasted bats (4.0 +/- 0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3 g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the iplTT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.
Resumo:
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation, but also in cell death, transcriptional activation of hypertrophy, inflammation and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Resumo:
Rangel EM, Mendes IA, Carnio EC, Marchi Alves LM, Godoy S, Crispim JA. Development, implementation, and assessment of a distance module in endocrine physiology. Adv Physiol Educ 34: 70-74, 2010; doi: 10.1152/advan.00070.2009.-This study aimed to develop, implement, and assess a distance module in endocrine physiology in TelEduc for undergraduate nursing students from a public university in Brazil, with a sample size of 44 students. Stage 1 consisted of the development of the module, through the process of creating a distance course by means of the Web. Stage 2 was the planning of the module's practical functioning, and stage 3 was the planning of student evaluations. In the experts' assessment, the module complied with pedagogical and technical requirements most of the time. In the practical functioning stage, 10 h were dedicated for on-site activities and 10 h for distance activities. Most students (93.2%) were women between 19 and 23 yr of age (75%). The internet was the most used means to remain updated for 23 students (59.0%), and 30 students (68.2%) accessed it from the teaching institution. A personal computer was used by 23 students (56.1%), and most of them (58.1%) learned to use it alone. Access to a forum was more dispersed (variation coefficient: 86.80%) than access to chat (variation coefficient: 65.14%). Average participation was 30 students in forums and 22 students in the chat. Students' final grades in the module averaged 8.5 (SD: 1.2). TelEduc was shown to be efficient in supporting the teaching- learning process of endocrine physiology.
Resumo:
Background: Minimally invasive techniques have been revolutionary and provide clinical evidence of decreased morbidity and comparable efficacy to traditional open surgery. Computer-assisted surgical devices have recently been approved for general surgical use. Aim: The aim of this study was to report the first known case of pancreatic resection with the use of a computer-assisted, or robotic, surgical device in Latin America. Patient and Methods: A 37-year-old female with a previous history of radical mastectomy for bilateral breast cancer due to a BRCA2 mutation presented with an acute pancreatitis episode. Radiologic investigation disclosed an intraductal pancreatic neoplasm located in the neck of the pancreas with atrophy of the body and tail. The main pancreatic duct was enlarged. The surgical decision was to perform a laparoscopic subtotal pancreatectomy, using the da Vinci (R) robotic system (Intuitive Surgical, Sunnyvale, CA). Five trocars were used. Pancreatic transection was achieved with vascular endoscopic stapler. The surgical specimen was removed without an additional incision. Results: Operative time was 240 minutes. Blood loss was minimal, and the patient did not receive a transfusion. The recovery was uneventful, and the patient was discharged on postoperative day 4. Conclusions: The subtotal laparoscopic pancreatic resection can safely be performed. The da Vinci robotic system allowed for technical refinements of laparoscopic pancreatic resection. Robotic assistance improved the dissection and control of major blood vessels due to three-dimensional visualization of the operative field and instruments with wrist-type end-effectors.
Resumo:
Lellis-Santos C, Giannocco G, Nunes MT. The case of thyroid hormones: how to learn physiology by solving a detective case. Adv Physiol Educ 35: 219-226, 2011; doi:10.1152/advan.00135.2010.Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify the signs and symptoms of thyroid dysfunction. The present study aimed to create a new pedagogical approach to build deep knowledge about hypo-/hyperthyroidism by proposing a hands-on activity based on a detective case, using alternative materials in place of laboratory animals. After receiving a description of a criminal story involving changes in thyroid hormone economy, students collected data from clues, such as body weight, mesenteric vascularization, visceral fat, heart and thyroid size, heart rate, and thyroid-stimulating hormone serum concentration to solve the case. Nevertheless, there was one missing clue for each panel of data. Four different materials were proposed to perform the same practical lesson. Animals, pictures, small stuffed toy rats, and illustrations were all effective to promote learning, and the detective case context was considered by students as inviting and stimulating. The activity can be easily performed independently of the institution's purchasing power. The practical lesson stimulated the scientific method of data collection and organization, discussion, and review of thyroid hormone actions to solve the case. Hence, this activity provides a new strategy and alternative materials to teach without animal euthanization.
Resumo:
A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.
Resumo:
P>Antibody-mediated rejection (AMR) requires specific diagnostic tools and treatment and is associated with lower graft survival. We prospectively screened C4d in pancreas (n = 35, in 27 patients) and kidney (n = 33, in 21 patients) for cause biopsies. Serum amylase and lipase, amylasuria, fasting blood glucose (FBG) and 2-h capillary glucose (CG) were also analysed. We found that 27.3% of kidney biopsies and 43% of pancreatic biopsies showed C4d staining (66.7% and 53.3% diffuse in peritubular and interacinar capillaries respectively). Isolated exocrine dysfunction was the main indication for pancreas biopsy (54.3%) and was followed by both exocrine and endocrine dysfunctions (37.1%) and isolated endocrine dysfunction (8.6%). Laboratorial parameters were comparable between T-cell mediated rejection and AMR: amylase 151.5 vs. 149 U/l (P = 0.075), lipase 1120 vs. 1288.5 U/l (P = 0.83), amylasuria variation 46.5 vs. 61% (P = 0.97), FBG 69 vs. 97 mg/dl (P = 0.20) and 2-h CG maximum 149.5 vs. 197.5 mg/dl (P = 0.49) respectively. Amylasuria values after treatment correlated with pancreas allograft loss (P = 0.015). These data suggest that C4d staining should be routinely investigated when pancreas allograft dysfunction is present because of its high detection rate in cases of rejection.
Resumo:
Reports on the use of sirolimus (SRL) in pancreas transplantation are still limited. The aim of this study was to evaluate the outcome of SRL conversion in pancreas transplant patients. Among 247 patients undergoing simultaneous kidney-pancreas or solitary pancreas transplantation, 33 (13%) were converted to SRL. The reasons for conversion were calcineurin inhibitors (CNI) nephrotoxicity (n = 24; 73%), severe neurotoxicity owing to CNI (n = 1; 3%), severe and/or recurrent acute rejection episodes (n = 7; 21.%), gastrointestinal (GI) side effects of mycophenolate mofetil (MMF; n = 5; 15%), and hyperglycemia (n = 4; 12%). Before conversion, all patients were maintained on a CNI, MMF, and low-dose steroids. They were gradually converted to SRL associated with either CNI or MMF withdrawal. Sixty-three percent (n = 15) of patients who were converted owing to CNI nephrotoxicity, showed stable or improved renal function. At 12 months after conversion, serum creatinine levels were significantly decreased in this group (2.2 +/- 0.5 vs 1.6 +/- 0.3 mg/dL; P = .001) and C-peptide values increased (2.9 +/- 1.1.1 vs 3.1 +/- 1.3 nmol/L; P = .01.8). The only patient with leucoencephalopathy showed improved neurologic status after SRL conversion. All patients converted to SRL because of GI side effects of MMF showed improvements, and none of those converted because of hyperglycemia experienced improvement. There were no episodes of acute rejection after conversion. We concluded that conversion to SRL in pancreas transplantation should be considered an important alternative strategy, particularly for CNI nephrotoxicity and neurotoxicity, and in cases of severe diarrhea due to MMF.
Resumo:
Epidemiologic studies have suggested that aromatic amines (and nitroaromatic hydrocarbons) may be carcinogenic for human pancreas, Pancreatic tissues from 29 organ donors (13 smokers, 16 non-smokers) were examined for their ability to metabolize aromatic amines and other carcinogens, Microsomes showed no activity for cytochrome P450 (P450) 1A2-dependent N-oxidation of 4-aminobiphenyl (ABP) or for the following activities (and associated P450s): aminopyrine N-demethylation and ethylmorphine N-demethylation (P450 3A4); ethoxyresorufin O-deethylation (P450 1A1) and pentoxyresorufin O-dealkylation (P450 2B6); p-nitrophenol hydroxylation and N-nitrosodimethylamine N-demethylation (P450 2E1); lauric acid omega-hydroxylation (P450 4A1); and 4-(methylnitrosamino)-1-(3-pyridyl-1-butanol) (NNAL) and 4-(methylnitrosamino)1-(3-pyridyl)-1-butanone (NNK) alpha-oxidation (P450 1A2, 2A6, 2D6). Antibodies were used to examine microsomal levels of P450 1A2, 2A6, 2C8/9/18/19, 2E1, 2D6, and 3A3/ 4/5/7 and epoxide hydrolase. Immunoblots detected only epoxide hydrolase at low levels; P450 levels were <1% of liver. Microsomal benzidine/prostaglandin hydroperoxidation activity was low. In pancreatic cytosols and microsomes, 4-nitrobiphenyl reductase activities were present at levels comparable to human liver. The O-acetyltransferase activity (AcCoA-dependent DNA-binding of [H-3]N-hydroxy-ABP) of pancreatic cytosols was high, about two-thirds the levels measured in human colon. Cytosols showed high activity for N-acetylation of p-aminobenzoic acid, but not of sulfamethazine, indicating that acetyltransferase-1 (NAT1) is predominantly expressed in this tissue. Cytosolic sulfotransferase was detected at low levels. Using P-32-post-labeling enhanced by butanol extraction, putative arylamine-DNA adducts were detected in most samples. Moreover, in eight of 29 DNA samples, a major adduct was observed that was chromatographically identical to the predominant ABP-DNA adduct, N-(deoxyguanosin-8-yl)-ABP. These results are consistent with a hypothesis that aromatic amines and nitroaromatic hydrocarbons may be involved in the etiology of human pancreatic cancer.