92 resultados para Panavia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar a Influência da associação de catalisadores químicos junto a diferentes sistemas adesivos autocondicionantes e cimentos resinosos de dupla polimerização, na cimentação de pinos pré-fabricados de fibra de vidro, quanto a sua resistência ao cisalhamento por extrusão - push out, seu grau de conversão e nanoinfiltração. Foram utilizadas trinta raízes bovinas extraídas, que tiveram seus canais obturados com guta-percha termoplastificada, divididas em três grupos: G1 - Adper SE Plus /Rely X ARC; G2- Adper SE Plus / Catalisador Scotchbond + Rely X ARC ; G3- Clearfil SE Bond / ED Primer + Panavia F. Após a cimentação dos pinos foram obtidas fatias das raízes, com 1mm de espessura, dos terços cervical (C), médio (M) e apical (A). O ensaio de resistência ao cisalhamento por extrusão foi realizado em máquina de ensaio universal EMIC D500 com carga de 100KN à velocidade de 1,0 mm/min, até o deslocamento do pino. Os dados obtidos no ensaio foram tabulados e submetidos à análise estatística. A análise de variância a dois critérios mostrou que apenas os fatores grupo e profundidade foram significativos, não sendo significativa a sua interação. O resultado do teste de Tukey (ρ≥0,05), para o fator grupo, mostrou que a menor média de resistência ao cisalhamento por extrusão foi obtida pelo grupo 3, que apresentou diferença estatística significativa para os grupos 1 e 2 que não diferiram entre si. Para o fator Profundidade a maior média foi obtida no terço cervical que apresentou diferença estatística significativa para os terços médio e apical que não diferiram entre si: A análise do grau de conversão foi feita após vinte e quatro horas e os fatores estudados foram os cimentos resinosos Panavia F e Rely X ARC e os catalisadores químicos ED Primer e Catalisador Scotchbond, na forma incorporada ou aplicada superficialmente aos cimentos, formando 10 grupos experimentais. Para o grau de conversão, o teste de Tukey mostrou que o catalisador químico não aumentou o grau de conversão do RelyX ARC, já para o Panavia F, este aumentou significativamente seu grau de conversão. Quanto a análise em MEV da nanoinfiltração para o fator grupo, o resultado do teste de Tukey (ρ≥0,05) mostrou que a maior média foi obtida pelo grupo 3 que apresentou diferença estatística significativa para os grupos 1 e 2, que não diferiram entre si. Para o fator Profundidade a maior média foi obtida no terço apical que apresentou diferença estatística significativa para o terço cervical, que não diferiu do terço médio. Conclusões: 1- A associação de catalisadores químicos não aumentou a resistência ao cisalhamento por extrusão dos pinos de fibra de vidro. 2- O cimento Panavia F é dependente de catalisador aumentar o grau de conversão. 3- A associação de catalisadores químicos não foi capaz de alterar o padrão da camada híbrida, representado pela nanoinfiltração. 4- A nanoinfiltração está associada inversamente ao grau de conversão dos sistemas de cimentação, o que contribui negativamente para a resistência adesiva de pinos de fibra de vidro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex. 
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth. 
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength. 
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. In vitro studies on the retentive strengths of various cements used to retain posts have reported conflicting results. Purpose. The purpose of this study was to compare the tensile strength of commercially pure titanium and type III cast gold-alloy posts and cores cemented with zinc phosphate or resin cement. Material and methods. Forty-two extracted human canines were endoclontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the posts and cores were made, and specimens were cast in commercially pure titanium and in type III gold alloy (n=7). Fourteen titanium cast posts and cores were submitted to surface treatment with Kroll acid solution and to scanning electron microscopy (SEM), before and after acid etching. The groups (n=7) were cemented with zinc phosphate cement or resin cement (Panavia F). Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (Kgf) were statistically analyzed by 2-way ANCIVA (alpha=.05). Results. The 2-way ANOVA indicated that there were no significant differences among the groups tested. Retentive means for zinc phosphate and Panavia F cements were statistically similar. The bond strength was not Influenced by the alloy, the luting material, or the etching treatment. SEM analysis indicated that the etched surfaces were smoother than those that did not receive surface treatment, but this fact did not influence the results. Conclusions. Commercially pure titanium cast posts and cores cemented with zinc phosphate and resin cements demonstrated similar mean tensile retentive values. Retentive values were also similar to mean values recorded for cast gold-alloy posts and cores cemented with zinc phosphate cement and resin cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the effect of metal conditioners on the bond strength between resin cements and cast titanium. Method and Materials: Commercially pure titanium (99.56%) was cast using an arc casting machine. Surfaces were finished with 400-grit silicon carbide paper followed by air abrasion with 50-mu m aluminum oxide. A piece of double-coated tape with a 4-mm circular hole was then positioned on the metal surface to control the area of the bond. The prepared surfaces were then divided into 4 groups (n=10): G1, unprimed Panavia F; G2, Alloy Primer-Panavia F; G3, unprimed Bistite DC; G4, Metaltite-Bistite DC. Forty minutes after insertion of the resin cements, the specimens were detached from the mold and stored in water at 37 C for 24 hours. Shear bond strength was performed in a testing machine (MTS 810) at a crosshead speed of 0.5 mm/min. Data were analyzed using ANOVA and Tukey's test with a .05 significance level. The fractured surfaces were observed through an optical microscope at 10x magnification. Results: the G1 group demonstrated significantly higher shear bond strength (17.95 MPa) than the other groups. G3 (13.79 MPa) and G4 (12.98 MPa) showed similar mean values to each other and were statistically superior to G2 (9.31 MPa). Debonded surfaces generally presented adhesive failure between metal surfaces and resin cements. Conclusion: While the Metaltite conditioner did not influence the bond strength of the Bistite DC cement, the Alloy Primer conditioner significantly decreased the mean bond strength of the Panavia F cement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the fracture resistance of teeth submitted to internal bleaching and restored with different non-metallic post. Eighty mandibular incisors were endodontically treated and randomly divided in 10 groups (n = 8): G1- restored with composite resin (CR), G2- CR + fiber-reinforced composite post (FRC, Everstick post, Sticktech) cemented with resin cement self-etch adhesive (RCS, Panavia F 2.0, Kuraray), G3- CR + FRC + self-adhesive resin cement (SRC, Breeze, Pentral Clinical), G4- CR+ glass fiber post (GF, Exacto Post, Angelus) + RCS, G5- CR + GF + SRC. The G6 to G10 were bleached with hydrogen peroxide (HP) and restored with the same restorative procedures used for G1 to G5, respectively. After 7 days storage in artificial saliva, the specimens were submitted to the compressive strength test (N) at 0.5 mm/min cross-head speed and the failure pattern was identified as either reparable (failure showed until 2 mm below the cement-enamel junction) or irreparable (the failure showed <2 mm or more below the cement-enamel). Data were analyzed by ANOVA and Tukey test (α = 0.05). No significant difference (p < 0.05) was found among G1 to G10. The results suggest that intracoronal bleaching did not significantly weaken the teeth and the failure patterns were predominately reparable for all groups. The non-metallic posts in these teeth did not improve fracture resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose:This study evaluated the microtensile bond strength of two resin cements to dentin either with their corresponding self-etching adhesives or employing the three-step etch-and-rinse technique. The null hypothesis was that the etch-and-rinse adhesive system would generate higher bond strengths than the self-etching adhesives.Materials and Methods:Thirty-two human molars were randomly divided into four groups (N = 32, n = 8/per group): G1) ED Primer self-etching adhesive + Panavia F; G2) All-Bond 2 etch-and-rinse adhesive + Panavia F; G3) Multilink primer A/B self-etching adhesive + Multilink resin cement; G4) All-Bond 2 + Multilink. After cementation of composite resin blocks (5 x 5 x 4 mm), the specimens were stored in water (37 degrees C, 24 hours), and sectioned to obtain beams (+/- 1 mm2 of adhesive area) to be submitted to microtensile test. The data were analyzed using 2-way analysis of variance and Tukey's test (alpha = 0.05).Results:Although the cement type did not significantly affect the results (p = 0.35), a significant effect of the adhesive system (p = 0.0001) was found on the bond strength results. Interaction terms were not significant (p = 0.88751). The etch-and-rinse adhesive provided significantly higher bond strength values (MPa) with both resin cements (G2: 34.4 +/- 10.6; G4: 33.0 +/- 8.9) compared to the self-etching adhesive systems (G1: 19.8 +/- 6.6; G3: 17.8 +/- 7.2) (p < 0.0001). Pretest failures were more frequent in the groups where self-etching systems were used.Conclusion:Although the cement type did not affect the results, there was a significant effect of changing the bonding strategy. The use of the three-step etch-and-rinse adhesive resulted in significantly higher bond strength for both resin cements on dentin.CLINICAL SIGNIFICANCEDual polymerized resin cements tested could deliver higher bond strength to dentin in combination with etch-and-rinse adhesive systems as opposed to their use in combination with self-etching adhesives.(J Esthet Restor Dent 22:262-269, 2010).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The limitation of photoactivation of dual-polymerized resin cements along the margins of metal restorations may adversely affect the mechanical properties of these cements, thus impairing the retention of restorations. The aim of this study was to assess the bond strength of cast metal crowns cemented with three dual-polymerized resin cements, using a chemically-activated resin cement and zinc phosphate as controls. Fifty nickel-chromium alloy crowns were cast and randomly assigned to five groups of equal size. Castings were cemented on their corresponding metal dies with one of the tested luting agents: Scotchbond Resin Cement, Enforce and Panavia F (dual-polymerized resin cements), Cement-It (chemically-activated resin cement) and Zinc Phosphate Cement (zinc phosphate cement). Specimens were stored in distilled water at 37 degreesC for 24 h and then loaded in tension until failure. Panavia F and Zinc Phosphate Cement provided the highest and lowest bond strength means, respectively. Scotchbond Resin Cement, Enforce and Cement-It cements exhibited similar intermediate values, but with statistically significant difference compared to the other materials (P < 0.05). Even with the restriction or absence of light activation, all tested dual-polymerized resin cements produced significantly higher bond strength than did the zinc phosphate cement and yielded similar or better results than the chemically activated cement. It should be pointed out that the findings of this study relate to a test scenario which does not mimic clinical circumstances and that further work is required to identify the clinical significance of the reported tensile bond strength differences between the different luting materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Prosthetic restorations that fit poorly may affect periodontal health and occlusion. Studies that have evaluated the accuracy of fit of ceramic restorations before and after cementation assessed primarily intracoronal restorations.Purpose. This in vitro study evaluated the effect of different finish lines, ceramic manufacturing techniques, and luting agents on the vertical discrepancy of ceramic copings.Material and methods. Two stainless steel molars were prepared for complete crowns with 2 different finish lines (heavy chamfer and rounded shoulder); each molar was duplicated to fabricate 90 copings. A total of 180 copings generated 18 groups (n=10 for each finish line-coping material-luting agent combination). Luting agents tested included zinc phosphate, resin-modified glass ionomer (Fuji Plus), and resin composite cements (Panavia F). A metal frame was developed on which to screw the stainless steel model and a ceramic coping; the distance (mum) between 2 predetermined points was measured before and after cementation by a profile projector under a torquing force. A 4-way ANOVA with repeated measurements was performed to assess the influence of each factor in the vertical marginal discrepancy: 3 between-coping factors (finish line-coping material-luting agent) and 1 within-coping factor (before and after cementation) (alpha=.05).Results. Procera copings presented the lowest mean values (P<.05) of vertical marginal discrepancy before and after cementation (25/44 mum) when compared to Empress 2 (68/110 mum) and InCeram Alumina copings (57/117 mum), regardless of any combinations among all finish lines and luting agents tested.Conclusion. Considering each factor separately, the ceramic manufacturing technique appeared to be the most important factor tested for the definitive vertical discrepancy of all-ceramic copings, with lower mean values for Procera copings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures.Purpose. The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent.Material and methods. Blocks (6 X 6 X 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-mu m Al(2)O(3); RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then Cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm(2) (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis.Results. Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) (P = .00015) and CS (18.5 +/- 4.7) (P=.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone.Conclusion. Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: the aim of this investigation was to evaluate the cervical adaptation of metal crowns under several conditions, namely (1) variations in the cervical finish line of the preparation, (2) application of internal relief inside the crowns, and (3) cementation using different luting materials. Method and Materials: One hundred eighty stainless-steel master dies were prepared simulating full crown preparations: 60 in chamfer (CH), 60 in 135-degree shoulder (OB), and 60 in rounded shoulder (OR). The finish lines were machined at approximate dimensions of a molar tooth preparation (height: 5.5 mm; cervical diameter: 8 mm; occlusal diameter: 6.4 mm; taper degree: 6; and cervical finish line width: 0.8 mm). One hundred eighty corresponding copings with the same finish lines were fabricated. A 30-mu m internal relief was machined 0.5 mm above the cervical finish line in 90 of these copings. The fit of the die and the coping was measured from all specimens (L0) prior to cementation using an optical microscope. After manipulation of the 3 types of cements (zinc phosphate, glass-ionomer, and resin cement), the coping was luted on the corresponding standard master die under 5-kgf loading for 4 minutes. Vertical discrepancy was again measured (L1), and the difference between L1 and L0 indicated the cervical adaptation. Results: Significant influence of the finish line, cement type, and internal relief was observed on the cervical adaptation (P < .001). The CH type of cervical finish line resulted in the best cervical adaptation of the metal crowns regardless of the cement type either with or without internal relief (36.6 +/- 3 to 100.8 +/- 4 mu m) (3-way analysis of variance and Tukey's test, alpha = .05). The use of glass-ionomer cement resulted in the least cervical discrepancy (36.6 +/- 3 to 115 +/- 4 mu m) than those of other cements (45.2 +/- 4 to 130.3 +/- 2 mu m) in all conditions. Conclusion: the best cervical adaptation was achieved with the chamfer type of finish line. The internal relief improved the marginal adaptation significantly, and the glass-ionomer cement led to the best cervical adaptation, followed by zinc phosphate and resin cement.