25 resultados para Palmaria
Resumo:
Tank cultivation of marine macroalgae involves air-agitation of the algal biomass and intermittent light conditions, i.e. periodic, short light exposure of the thalli in the range of 10 s at the water surface followed by plunging to low light or darkness at the tank bottom and recirculation back to the surface in the range of 1-2 min. Open questions relate to effects of surface irradiance on growth rate and yield in such tumble cultures and the possibility of chronic photoinhibition in full sunlight. A specially constructed shallow-depth tank combined with a dark tank allowed fast circulation times of approximately 5 s, at a density of 4.2 kg fresh weight (FW) m(-2) s(-1). Growth rate and yield of the red alga Palmaria palmata increased over a wide range of irradiances, with no signs of chronic photoinhibition, up to a growth-saturating irradiance of approximately 1600 mumol m(-2) s(-1) in yellowish light supplied by a sodium high pressure lamp at 16 h light per day. Maximum growth rate ranged at 12% FW d(-1), and maximum yield at 609 g FW m(-2) d(-1). This shows that high growth rates of individual thalli may be reached in a dense tumble culture, if high surface irradiances and short circulation times are supplied. Another aspect of intermittent light relates to possible changes of basic growth kinetics, as compared to continuous light. For this purpose on-line measurements of growth rate were performed with a daily light reduction by 50% in light-dark cycles of 1, 2 or 3 min duration during the daily light period. Growth rates at 10degreesC and 50 mumol photon m(-2) s- 1 dropped in all three intermittent light regimes during both the main light and dark periods and reached with all three periodicities approximately 50% of the control, with no apparent changes in basic growth kinetics, as compared to continuous light.
Resumo:
R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.
Resumo:
Field-collected tetrasporophytes of Palmaria palmata were tumbled in 300-L outdoor tanks from January to August at ambient daylength or in a constant short-day (SD) regime (8 h light per day), both at 10 or 15 degrees C. Tetrasporangia were massively induced after 2.5 months under SD conditions at 10 degrees C and completely lacking at 15 degrees C, both under SD or ambient daylength conditions, with a few tetrasporangia present at 10 degrees C and ambient daylength. Elongation rates of tagged tetrasporophytic thalli peaked from March to April in all four conditions, when the biomass densities in the outdoor tanks were close to 2.5 kg fresh weight m(-2). Under all four conditions, juvenile proliferations started to appear in June from the margins of the old fronds, and attained approximately 1 cm in length by the end of July. Approximately 80% of the tetraspores were released during the first three dark phases in a light/dark regime, and the remaining 20% during the light phases. A minimum of 10 min darkness was observed to trigger spore release. White light inhibited tetraspore release, while a similar number of spores were released in continuous red light or in the light/dark regime, although with no significant differences of spore release during subjective days and nights. Sporelings were successfully derived from the released tetraspores for mass propagation of the male gametophyte in 2000-L outdoor tanks in a greenhouse. Mass production of male gametophytic sporelings of P. palmata was completed two times by SD induction of tetrasporangia at 10 degrees C, release of spores in darkness and culturing the sporelings until they were ready to be propagated vegetatively in greenhouse tanks. One experiment lasted from January to October 2001, with spore release in June, and the second from September to April 2003, with spore release in January. These results may support the development of sustainable, year-round Palmaria farming. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = ∼8.04) and increased (pHNBS = ∼7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.
Resumo:
Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2–3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128 000 bp and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20 000 bp) in the Hurd Deep, an enigmatic trench in the English Channel.
Resumo:
Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.
Resumo:
In coastal waters, Antarctic rhodophytes are exposed to harsh environmental conditions throughout the year, like low water temperatures ranging from -1.8°C to 2°C and high light during the summer season. Photosynthetic performance under these conditions may be affected by slowed down enzymatic reactions and the increased generation of reactive oxygen species. The consequence might be a chronic photoinhibition of photosynthetic primary reactions related to increased fragmentation of the D1 reaction centre protein in photosystem II. It is hypothesized that changes in lipid composition of biomembranes may represent an adaptive trait to maintain D1 turnover in response to temperature variation. The interactive effects of high light and low temperature were studied on an endemic Antarctic red alga, Palmaria decipiens, sampled from two shore levels, intertidal and subtidal, and exposed to mesocosm experiments using two levels of natural solar radiation and two different temperature regimes (2-5°C and 5-10°C). During the experimental period of 23 days, maximum quantum yield of photosynthesis decreased in all treatments, with the intertidal specimens exposed at 5-10°C being most affected. On the pigment level, a decreasing ratio of phycobiliproteins to chlorophyll a was found in all treatments. A pronounced decrease in D1 protein concentration occurred in subtidal specimens exposed at 2-5°C. Marked changes in lipid composition, i.e. the ratio of saturated to unsaturated fatty acids, indicated an effective response of specimens to temperature change. Results provide new insights into mechanisms of stress adaptation in this key species of shallow Antarctic benthic communities.
Resumo:
Palmaria stenogona (Perestenko) Perestenko
Resumo:
2009
Resumo:
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are Suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. fit this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble Culture were assessed at a temperature range of 10 similar to 30 degrees C. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30 degrees C for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25 degrees C for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 similar to 26 degrees C) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield. Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30 degrees C, similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36 degrees N was proposed according to these basic measurements.
Resumo:
Grateloupia turuturu, previously known as Grateloupia doryphora, has been widely reported to be an invasive algal species. There are no studies to relate the impact of its existence on its surrounding environment. In this paper, we present our results to show that about 70% of individuals collected from the field could turn Vibrio parahaemolyticus into non-culturable state on both selective (TCBS) and non-selective (2216E) culture medium in 24 h in the presence of light in live algal culture. Total bacteria counts on TCBS and 2216E plates dropped from the initial 565 (174) and 1192 (60) cfu ml(-1) respectively to zero in 24 h. This effect disappeared when the alga was grown in darkness. The same effect was not found in two other intertidal macroalgae Laminaria japonica and Palmaria palmata. Further tests showed that the settlement ability of bacteria in seawater was impaired significantly in the presence of this alga in comparison with three other algal species. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.
Resumo:
Resumen tomado de la publicación.- Anexos con gráficos