831 resultados para Palatal Appliances
Resumo:
This in situ/ex vivo study assessed the effect of different concentrations of fluoride in dentifrices on dentin subjected to erosion or to erosion plus abrasion. Ten volunteers took part in this crossover and double-blind study performed in 3 phases (7 days). They wore acrylic palatal appliances containing 4 bovine dentin blocks divided in two rows: erosion and erosion plus abrasion. The blocks were subjected to erosion by immersion ex vivo in a cola drink (60 s, pH 2.6) 4 times daily. During this step, the volunteers brushed their teeth with one of three dentifrices D (5,000 ppm F, NaF, silica); C (1,100 ppm F, NaF, silica) and placebo (22 ppm F, silica). Then, the respective dentifrice slurry (1: 3) was dripped on dentin surfaces. While no further treatment was performed in one row, the other row was brushed using an electric toothbrush for 30 s ex vivo. The appliances were replaced in the mouth and the volunteers rinsed with water. Dentin loss was determined by profilometry and analyzed by 2-way ANOVA/Bonferroni test (alpha = 0.05). Dentin loss after erosive-abrasive wear was significantly greater than after erosion alone. Wear was significantly higher for the placebo than for the D and C dentifrices, which were not significantly different from each other. It can be concluded that the presence of fluoride concentrations around 1,100 ppm in dentifrices is important to reduce dentin wear by erosion and erosion + abrasion, but the protective effect does not increase with fluoride concentration. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This in situ/ex vivo study assessed the effect of titanium tetrafluoride (TiF4) on permanent human enamel subjected to erosion.Design: Ten volunteers took part in this study performed in two phases. In the first phase (ERO), they wore acrylic palatal appliances containing two enamel blocks, divided into two rows: TiF4 (F) and no-TiF4 (no-F). During the 1st day, the formation of a salivary pellicle was allowed. In the 2nd day, the TiF4 solution was applied on one row (ERO + F), whereas on the other row no treatment was performed (ERO + no-F). From 3rd until 7th day, the blocks were subjected to erosion, 4x per day. In the 2nd phase (no-ERO), the volunteers wore acrylic palatal appliances containing one enamel block, during 2 days, to assess the effect of TiF4 only (no-ERO + F). Enamel alterations were determined using profilometry (wear), microhardness (%SMHC) tests, scanning electron microscope and microprobe analysis. The %SMHC and wear were tested using ANOVA and Tukey's post hoc tests (p < 0.05).Results: The mean of %SMHC and wear ( mu m) values ( +/- S.D.) were, respectively: ERO + F -73.32 +/- 5.16(A)/2.40 +/- 0.60(a); ERO + no-F -83.49 +/- 4.59B/1.17 +/- 0.48(b) and no-ERO + F -67.92 +/- 6.16(A)/0.21:E 0.09(c). In microscope analysis, the no-F group showed enamel with honeycomb appearance. For F groups, it was observed a surface coating with microcracks. The microprobe analysis revealed the presence of the following elements (%) in groups ERO + F, ERO + no-F and no-ERO + F, respectively: Ca (69.9, 72.5, 66.25); P (25.9, 26.5, 26.06); Ti (3.0, 0, 5.93).Conclusions: The TiF4 was unable to reduce dental erosion. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study aimed to evaluate laser fluorescence (LF) for monitoring the initial stage of subsurface de- and remineralization (<150 mu m depth). Ninety-six sound blocks of bovine enamel, selected according to surface hardness (SH) and LF were used in two experimental studies, in vitro and in situ. In vitro, blocks were exposed to a demineralizing solution, then remineralized by pH cycling for 6 days. In situ, 10 volunteers wore acrylic palatal appliances, each containing 4 dental enamel blocks that were demineralized for 14 days by exposure to 20% sucrose solution. Following this treatment, blocks were submitted to remineralization for 1 week with fluoride dentifrice (1,100 mu g F/g). In both experiments, SH and LH were measured after demineralization and after remineralization. Further, enamel blocks were selected after the demineralization/remineralization steps for measurement of cross-sectional hardness and integrated loss of subsurface hardness (Delta KHN). SH and Delta KHN showed significant differences among the phases in each study. LF values for sound, demineralized and remineralized enamel were: 5.2 +/- 1.1, 8.1 +/- 1.2 and 5.6 +/- 0.8, respectively, in the in vitro study, and 5.3 +/- 0.3, 16.5 +/- 4.7 and 6.5 +/- 2.5, respectively, in the in situ study, values for demineralized enamel being significantly higher than for sound and remineralized enamel in both studies. However, LF was correlated with Delta KHN only in situ. LF was capable of monitoring de- and remineralization in early lesions in situ, when bacteria are presumably present in the caries lesion body, but is not correlated with mineral changes in bacteria-free systems. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: This study investigated in situ the effect of iron (Fe) on the reduction of demineralization of bovine enamel, as well as on the composition of dental biofilm.Design and methods: Twelve volunteers were included in this blind crossover study, which was conducted in two stages of 14 days each. For each stage, the volunteers received palatal appliances containing four blocks of bovine enamel (4 mm x 4 mm x 2.5 mm). Six volunteers dripped a solution of 15 mmol L-1 ferrous sulphate onto the fragments and the remaining six dripped deionized water (eight times per day). After five minutes, a fresh 20% (w/v) sucrose solution was dripped onto all enamel blocks. During the experimental period the volunteers brushed their teeth with non-fluoridated dentifrice. After each stage, the percentage of surface microhardness change (%SMHC) and area of mineral toss (Delta Z) were determined on enamel and the dental biofilm formed on the blocks was collected and analysed for F, P, Ca, Fe and alkali-soluble carbohydrates. The concentrations of F, Ca and Fe in enamel were also analysed after acid biopsies.Results: There was a statistically significant increase in the P and Fe concentrations in the biofilms treated with ferrous sulphate (p < 0.05), which was not observed for F, Ca and alkali-soluble carbohydrates. The group treated with ferrous sulphate had significantly lower %SMHC and Delta Z when compared to control (p < 0.05).Conclusions: These results showed that ferrous sulphate reduced the demineralization of enamel blocks and altered the ionic composition of the dental biofilm formed in situ. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This in situ/ex vivo study assessed the effect of fluoride dentifrice on eroded enamel subjected to brushing abrasion. In a crossover study performed in 2 phases, 10 volunteers wore acrylic palatal appliances, each containing 3 human enamel blocks. Dentifrice was used to brush the volunteers' teeth and the specimens subjected to abrasion. In phases A and B the dentifrices used had the same formulation, except for the absence or presence of fluoride, respectively. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 min, 4 times a day. Then the blocks were brushed, and the appliance was replaced into the mouth. Enamel alterations were determined using profilometry and percentage change in surface microhardness (%SMHC) tests. The data were tested using the paired t test. The mean wear values (+/- SD, mu m) were: group A 6.84 +/- 1.72 and group B 5.38 +/- 1.21 (p = 0.04). The mean %SMHC values (+/- SD) were: group A 54.6 +/- 16.2 and group B 45.7 +/- 6.8 (p = 0.04). Fluoride dentifrice had a protective effect on eroded enamel subjected to brushing abrasion. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
The objective of this study was to assess the salivary residual effect of fluoride dentifrice on human enamel subjected to an erosive challenge. This crossover in situ study was performed in two phases (A and B), involving ten volunteers. In each phase, they wore acrylic palatal appliances, each containing 3 human enamel blocks, during 7 days. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 minutes, 4 times a day. Dentifrice was used to brush the volunteers' teeth, 4 times a day, during 1 minute, before the appliance was replaced into the mouth. In phases A and B the dentifrices used had the same formulation, except for the absence (PD) or presence (FD) of fluoride, respectively. Enamel alterations were determined using profilometry, microhardness (%SMHC), acid- and alkali-soluble F analysis. The data were tested using ANOVA (p < 0.05). The concentrations (mean ± SD) of alkali- and acid-soluble F (μgF/cm 2) were, respectively, PD: 1.27 a ± 0.70/2.24∧ A ± 0.36 and FD: 1.49 a ± 0.44/2.24∧ ± 0.67 (p > 0.05). The mean wear values (± SD, μm) were PD: 3.63 a ± 1.54 and FD: 3.54 a ± 0.90 (p > 0.05). The mean %SMHC values (± SD) were PD: 89.63 a ± 4.73 and FD: 87.28 a ± 4.01 (p > 0.05). Thus, we concluded that the residual fluoride from the fluoride-containing dentifrice did not protect enamel against erosion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)