997 resultados para Pair 11
Resumo:
We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.
Resumo:
BACKGROUND: Carnitine is a key molecule in energy metabolism that helps transport activated fatty acids into the mitochondria. Its homeostasis is achieved through oral intake, renal reabsorption and de novo biosynthesis. Unlike dietary intake and renal reabsorption, the importance of de novo biosynthesis pathway in carnitine homeostasis remains unclear, due to lack of animal models and description of a single patient defective in this pathway. CASE PRESENTATION: We identified by array comparative genomic hybridization a 42 months-old girl homozygote for a 221 Kb interstitial deletions at 11p14.2, that overlaps the genes encoding Fibin and butyrobetaine-gamma 2-oxoglutarate dioxygenase 1 (BBOX1), an enzyme essential for the biosynthesis of carnitine de novo. She presented microcephaly, speech delay, growth retardation and minor facial anomalies. The levels of almost all evaluated metabolites were normal. Her serum level of free carnitine was at the lower limit of the reference range, while her acylcarnitine to free carnitine ratio was normal. CONCLUSIONS: We present an individual with a completely defective carnitine de novo biosynthesis. This condition results in mildly decreased free carnitine level, but not in clinical manifestations characteristic of carnitine deficiency disorders, suggesting that dietary carnitine intake and renal reabsorption are sufficient to carnitine homeostasis. Our results also demonstrate that haploinsufficiency of BBOX1 and/or Fibin is not associated with Primrose syndrome as previously suggested.
Resumo:
The combination of multiple exostoses (EXT) and enlarged parietal foramina (foramina parietalia permagna, FPP) represent the main features of the proximal 11p deletion syndrome (P11pDS), a contiguous gene syndrome (MIM 601224) caused by an interstitial deletion on the short arm of chromosome 11. Here we present clinical aspects of two new P11pDS patients and the clinical follow-up of one patient reported in the original paper describing this syndrome. Recognised clinical signs include EXT, FPP, mental retardation, facial asymmetry, asymmetric calcification of coronary sutures, defective vision (severe myopia, nystagmus, strabismus), skeletal anomalies (small hands and feet, tapering fingers), heart defect, and anal stenosis. In addition fluorescence in situ hybridisation and molecular analysis were performed to gain further insight in potential candidate genes involved in P11pDS.
Resumo:
OBJECTIVE: To investigate linkage to chromosome 1q and 11q region for lumbar spine, femoral neck and total body BMD and volumetric BMD in Brazilian sister adolescents aged 10-20-year-old and 57 mothers. METHODS: We evaluated 161 sister pairs (n=329) aged 10-20 years old and 57 of their mothers in this study. Physical traits and lifestyle factors were collected as covariates for lumbar spine (LS), femoral neck (FN) and total body (TB) BMD and bone mineral apparent density (BMAD). We selected nine microsatellite markers in chromosome 1q region (spanning nearly 33cM) and eight in chromosome 11q region (spanning nearly 34cM) to perform linkage analysis. RESULTS: The highest LOD score values obtained from our data were in sister pairs LS BMAD analysis. Their values were: 1.32 (P<0.006), 2.61 (P<0.0002) and 2.44 (P<0.0004) in D1S218, D1S2640 and D1S2623 markers, respectively. No significant LOD score was found with LS and FN BMD/BMAD in chromosome 11q region. Only TB BMD showed significant linkage higher than 1.0 for chromosome 11q region in the markers D11S4191 and D11S937. DISCUSSION/CONCLUSIONS: Our results provided suggestive linkage for LS BMAD at D1S2640 marker in adolescent sister pairs and suggest a possible candidate gene (LHX4) related to adolescent LS BMAD in this region. These results reinforce chromosome 1q21-23 as a candidate region to harbor one or more bone formation/maintenance gene. In the other hand, it did not repeat for chromosome 11q12-13 in our population.
Resumo:
Comparative cytogenetic analyses were carried out in six species of Brachycephalidae from southeastern Brazil. Barycholos ternetzi, Eleutherodactylus binotatus, Eleutherodactylus guentheri, Eleutherodactylus juipoca, Eleutherodactylus parvus and Eleutherodactylus sp. have 2n = 22 karyotypes with a marked variation in the morphology of chromosome pairs 8, 10 and 11, which are of telocentric or metacentric types, resulting in FN = 38, 40 and 44. Eleutherodactylus have a single chromosome pair bearing Ag-NOR, i.e. pair 1 in E. binotatus, pair 6 in E. guentheri and E. parvus, and pair 11 in E. juipoca and Eleutherodactylus sp. In contrast, B. ternetzi showed Ag-positive sites in the chromosome pairs 1, 4, 5, 9 and 11, and only one to three labelings per metdphase in each individual. Nevertheless, the main chromosome pair with Ag-NOR in the species seems to be the 11th, like in E. juipoca and Eleutherodactylus sp. The NOR site was confirmed by fluorescence in situ hybridization (FISH) technique in E. binotatus and in B. ternetzi, bearing 1p1p and 9p11p11p Ag-NOR pattern, respectively. All the species exhibited predominantly centromeric C-banding pattern, but interstitial bands have also been observed in some cases. In E. binotatus, there is an indication of geographical difference in the distribution of the interstitial C-bands. The fluorochromes GC-specific chromomycin A(3) (CMA(3)) and AT-specific 4',6-diamidino-2-phenylindole (DAPI), with distamycin A (DA) counterstaining, provided the molecular content of some repetitive regions in the karyotypes of the species. One male of E. binotatus presented an extensive heteromorphism, involving at least five different pairs, probably as a consequence of multiple reciprocal translocations. Such rearrangements might be responsible for the multivalent chain seen in the meiosis of this specimen, as well as in another male, although not exhibiting chromosome heteromorphism. The remaining males and those belonging to the other species have always shown 11 bivalents in diplotene and metaphase I cells. In all male specimens, metaphases II presented 11 chromosomes. Despite the observed discrepancies, the five species of Eleutherodactylus have a great uniformity in the 2n = 22 karyotypes, suggesting an assemblage of species from southeastern and southern Brazil, in contrast to northern and northeastern assemblage which is characterized by higher diploid numbers. Undoubtedly, B. ternetzi could be included in that proposed assemblage, due to its karyotypic similarity with the Eleutherodactylus species, as evidenced in the present study. This fact strongly supports the close relationships of both genera, previously inferred on the basis of several characters shared by their species. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Detailed characterizations of the karyotypes of the Brazilian leptodactylid frogs Pleurodema diplolistris, the only species of Pleurodema not studied cytogenetically so far, and Physalaemus nattereri, a species in the Ph. biligonigerus group, are presented. Both karyotypes had 2n = 22 and their chromosomes had a very similar morphology, except for pair 11, which was metacentric in Pl. diplolistris and telocentric in Ph. nattereri. The localization of nucleolar organizer regions (NORs) and heterochromatic bands allowed the differentiation of chromosomes that were morphologically indistinguishable between these species, such as pairs 1, 3 and 10, which showed interstitial C-bands in Ph. nattereri, and pair 8, that had an NOR and an adjacent C-band in Pl. diplolistris. Pair 8 also has NOR-bearing chromosomes in many other Pleurodema species. However, in these species, the NOR is located proximal to the centromere on the short arm, while in Pl. diplolistris it occurred distally on the long arm, a condition that may be considered a derived state. In Ph. nattereri, the NOR occurred on chromosome I 1 and differed from the other species of the Ph. biligonigerus group. In contrast, C-banding revealed a heterochromatic block near the centromere on the short arm of pair 3, a characteristic common to all members of this group of Physalaemus.
Resumo:
We report a female child with tetrasomy of the 15q11-q13 chromosomal region, and autistic disorder associated with mental retardation, developmental problems and behavioral disorders. Combining classical and molecular cytogenetic approaches by fluorescence in situ hybridization technique, the karyotype was demonstrated as 47,XX,+mar.ish der(15)(D15Z1++,D15S11++,GABRB3++,PML-). Duplication of the 15q proximal segment represents the most consistent chromosomal abnormality reported in association with autism. The contribution of the GABA receptor subunit genes, and other genes mapped to this region, to the clinical symptoms of the disease is discussed.
Resumo:
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive, malignant neoplasm usually present with the widespread abdominal serosal involvement and affects mainly adolescents and young adults. When presenting within visceral organs, as kidney, the diagnosis of DSRCT imposes significant difficulties. We present a case of primary DSRCT of the kidney in a 10-year-old boy mimicking clinically and pathologically Wilms tumor. The tumor showed morphologic and immunohistochemical features of DSRCT and the presence of the Ewing sarcoma and Wilm tumor 1 fusion transcripts resulting from the t(11;22) (p13;q12) reciprocal translocation. DSRCT should be considered in the differential diagnosis of Wilm tumor and other small blue-round cell tumors of the kidney. © 2009 by Lippincott Williams & Wilkins.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)