833 resultados para Packing problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a fixed set of identical or different-sized circular items, the problem we deal with consists on finding the smallest object within which the items can be packed. Circular, triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and 3D problems are treated. Twice-differentiable models for all these problems are presented. A strategy to reduce the complexity of evaluating the models is employed and, as a consequence, instances with a large number of items can be considered. Numerical experiments show the flexibility and reliability of the new unified approach. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cutting and packing problems arise in a variety of industries, including garment, wood and shipbuilding. Irregular shape packing is a special case which admits irregular items and is much more complex due to the geometry of items. In order to ensure that items do not overlap and no item from the layout protrudes from the container, the collision free region concept was adopted. It represents all possible translations for a new item to be inserted into a container with already placed items. To construct a feasible layout, collision free region for each item is determined through a sequence of Boolean operations over polygons. In order to improve the speed of the algorithm, a parallel version of the layout construction was proposed and it was applied to a simulated annealing algorithm used to solve bin packing problems. Tests were performed in order to determine the speed improvement of the parallel version over the serial algorithm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives and study method: The objective of this study is to develop exact algorithms that can be used as management tools for the agricultural production planning and to obtain exact solutions for two of the most well known twodimensional packing problems: the strip packing problem and the bin packing problem. For the agricultural production planning problem we propose a new hierarchical scheme of three stages to improve the current agricultural practices. The objective of the first stage is to delineate rectangular and homogeneous management zones into the farmer’s plots considering the physical and chemical soil properties. This is an important task because the soil properties directly affect the agricultural production planning. The methodology for this stage is based on a new method called “Positions and Covering” that first generates all the possible positions in which the plot can be delineated. Then, we use a mathematical model of linear programming to obtain the optimal physical and chemical management zone delineation of the plot. In the second stage the objective is to determine the optimal crop pattern that maximizes the farmer’s profit taken into account the previous management zones delineation. In this case, the crop pattern is affected by both management zones delineation, physical and chemical. A mixed integer linear programming is used to solve this stage. The objective of the last stage is to determine in real-time the amount of water to irrigate in each crop. This stage takes as input the solution of the crop planning stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level in plots, and the physical management zones of plots, just to name a few. This procedure is made in real-time during each irrigation period. A linear programming is used to solve this problem. A breakthrough happen when we realize that we could propose some adaptations of the P&C methodology to obtain optimal solutions for the two-dimensional packing problem and the strip packing. We empirically show that our methodologies are efficient on instances based on real data for both problems: agricultural and two-dimensional packing problems. Contributions and conclusions: The exact algorithms showed in this study can be used in the making-decision support for agricultural planning and twodimensional packing problems. For the agricultural planning problem, we show that the implementation of the new hierarchical approach can improve the farmer profit between 5.27% until 8.21% through the optimization of the natural resources. An important characteristic of this problem is that the soil properties (physical and chemical) and the real-time factors (climate, humidity level, evapotranspiration, etc.) are incorporated. With respect to the two-dimensional packing problems, one of the main contributions of this study is the fact that we have demonstrate that many of the best solutions founded in literature by others approaches (heuristics approaches) are the optimal solutions. This is very important because some of these solutions were up to now not guarantee to be the optimal solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The focus of study in this paper is the class of packing problems. More specifically, it deals with the placement of a set of N circular items of unitary radius inside an object with the aim of minimizing its dimensions. Differently shaped containers are considered, namely circles, squares, rectangles, strips and triangles. By means of the resolution of non-linear equations systems through the Newton-Raphson method, the herein presented algorithm succeeds in improving the accuracy of previous results attained by continuous optimization approaches up to numerical machine precision. The computer implementation and the data sets are available at http://www.ime.usp.br/similar to egbirgin/packing/. (C) 2009 Elsevier Ltd, All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems has ratio 3/2 + epsilon, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM J. Discrete Math. 2(1) (1989) 68-72]. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis deals with efficient solution of optimization problems of practical interest. The first part of the thesis deals with bin packing problems. The bin packing problem (BPP) is one of the oldest and most fundamental combinatorial optimiza- tion problems. The bin packing problem and its generalizations arise often in real-world ap- plications, from manufacturing industry, logistics and transportation of goods, and scheduling. After an introductory chapter, I will present two applications of two of the most natural extensions of the bin packing: Chapter 2 will be dedicated to an application of bin packing in two dimension to a problem of scheduling a set of computational tasks on a computer cluster, while Chapter 3 deals with the generalization of BPP in three dimensions that arise frequently in logistic and transportation, often com- plemented with additional constraints on the placement of items and characteristics of the solution, like, for example, guarantees on the stability of the items, to avoid potential damage to the transported goods, on the distribution of the total weight of the bins, and on compatibility with loading and unloading operations. The second part of the thesis, and in particular Chapter 4 considers the Trans- mission Expansion Problem (TEP), where an electrical transmission grid must be expanded so as to satisfy future energy demand at the minimum cost, while main- taining some guarantees of robustness to potential line failures. These problems are gaining importance in a world where a shift towards renewable energy can impose a significant geographical reallocation of generation capacities, resulting in the ne- cessity of expanding current power transmission grids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular two dimensional polygons inside a two dimensional container. This problem is approached with an heuristic based on simulated annealing. Traditional 14 external penalization"" techniques are avoided through the application of the no-fit polygon, that determinates the collision free area for each polygon before its placement. The simulated annealing controls: the rotation applied, the placement and the sequence of placement of the polygons. For each non placed polygon, a limited depth binary search is performed to find a scale factor that when applied to the polygon, would allow it to be fitted in the container. It is proposed a crystallization heuristic, in order to increase the number of accepted solutions. The bottom left and larger first deterministic heuristics were also studied. The proposed process is suited for non convex polygons and containers, the containers can have holes inside. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No âmbito da investigação operacional o problema de empacotamento de contentores é conhecido por procurar definir uma configuração de carga, de forma a otimizar a utilização de um espaço disponível para efetuar o empacotamento. Este problema pode ser apresentado em diversas formas, formas estas que variam em função das características de cada empacotamento. Estas características podem ser: o tipo de carga que se pretende carregar (homogénea ou heterogénea), a possibilidade de a carga poder sofrer rotações em todas as suas dimensões ou apenas em algumas, o lucro que está associado a cada caixa carregada ou restrições inerentes ao contentor como por exemplo dimensões. O interesse pelo estudo de problemas de empacotamento de contentores tem vindo a receber cada vez mais ênfase por várias razões, uma delas é o interesse financeiro dado que o transporte é uma prática que representa custos, sendo importante diminuir estes custos aproveitando o volume do contentor da melhor forma. Outra preocupação que motiva o estudo deste problema prende-se com fatores ambientes, onde se procura racionalizar os recursos naturais estando esta também ligada a questões financeiras. Na literatura podem ser encontradas varias propostas para solucionar este problema, cada uma destas dirigidas a uma variante do problema, estas propostas podem ser determinísticas ou não determinísticas onde utilizam heurísticas ou metaheurísticas. O estudo realizado nesta dissertação descreve algumas destas propostas, nomeadamente as metaheurísticas que são utilizadas na resolução deste problema. O trabalho aqui apresentado traz também uma nova metaheurísticas, mais precisamente um algoritmo genético que terá como objetivo, apresentar uma configuração de carga para um problema de empacotamento de um contentor. O algoritmo genético tem como objetivo a resolução do seguinte problema: empacotar várias caixas retangulares com diversos tamanhos num contentor. Este problema é conhecido como Bin-Packing. A novidade que este algoritmo genético vai introduzir nas diversas soluções apresentadas até à data, é uma nova forma de criar padrões iniciais, ou seja, é utilizada a heurística HSSI (Heurística de Suavização de Superfícies Irregulares) que tem como objetivo criar uma população inicial de forma a otimizar o algoritmo genético. A heurística HSSI tenta resolver problemas de empacotamento simulando, o comportamento da maioria das pessoas ao fazer este processo na vida real, contudo, tem um campo de busca reduzido entre as soluções possíveis e será então utilizado um algoritmo genético para ampliar este campo de busca e explorar novas soluções. No final pretende-se obter um software onde será possível configurar um dado problema de empacotamento de um contentor e obter, a solução do mesmo através do algoritmo genético. Assim sendo, o estudo realizado tem como principal objetivo contribuir com pesquisas e conclusões, sobre este problema e trazer uma nova proposta de solução para o problema de empacotamento de contentores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the classical one-dimensional integer cutting stock problem, which consists of cutting a set of available stock lengths in order to produce smaller ordered items. This process is carried out in order to optimize a given objective function (e.g., minimizing waste). Our study deals with a case in which there are several stock lengths available in limited quantities. Moreover, we have focused on problems of low demand. Some heuristic methods are proposed in order to obtain an integer solution and compared with others. The heuristic methods are empirically analyzed by solving a set of randomly generated instances and a set of instances from the literature. Concerning the latter. most of the optimal solutions of these instances are known, therefore it was possible to compare the solutions. The proposed methods presented very small objective function value gaps. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present approximation algorithms for the three-dimensional strip packing problem, and the three-dimensional bin packing problem. We consider orthogonal packings where 90 degrees rotations are allowed. The algorithms we show for these problems have asymptotic performance bounds 2.64, and 4.89, respectively. These algorithms are for the more general case in which the bounded dimensions of the bin given in the input are not necessarily equal (that is, we consider bins for which the length. the width and the height are not necessarily equal). Moreover, we show that these problems-in the general version-are as hard to approximate as the corresponding oriented version. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O problema tratado neste trabalho consiste em cortar uma placa retangular em peças menores retangulares, de modo que a perda seja minimizada. A placa, entretanto, contém defeitos bem localizados. Propomos uma abordagem em grafo E/OU para representação das soluções possíveis e um método de enumeração implícita para determinar a solução ótima. Resultados computacionais demonstram a efetividade da abordagem.