989 resultados para Pacific Decadal Oscillation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton phenology and community structure in the western North Pacific were investigated for 2001–2009, based on satellite ocean colour data and the Continuous Plankton Recorder survey. We estimated the timing of the spring bloom based on the cumulative sum satellite chlorophyll adata, and found that the Pacific Decadal Oscillation (PDO)-related interannual SST anomaly in spring significantly affected phytoplankton phenology. The bloom occurred either later or earlier in years of positive or negative PDO (indicating cold and warm conditions, respectively). Phytoplankton composition in the early summer varied depending on the magnitude of seasonal SST increases, rather than the SST value itself. Interannual variations in diatom abundance and the relative abundance of non-diatoms were positively correlated with SST increases for March–April and May–July, respectively, suggesting that mixed layer environmental factors, such as light availability and nutrient stoichiometry, determine shifts in phytoplankton community structure. Our study emphasised the importance of the interannual variation in climate-induced warm–cool cycles as one of the key mechanisms linking climatic forcing and lower trophic level ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three ice cores from Guoqu Glacier (33 degrees 34'37.80 '' N, 91 degrees 10'35.3 '' E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes ( delta(18)O), major soluble ions (Na(+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3)(-), SO(4)(2-)), and radionuclide (beta-activity) measurements from one of the cores revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate variability drives significant changes in the physical state of the North Pacific, and there may be important impacts of this variability on the upper ocean carbon balance across the basin. We address this issue by considering the response of seven biogeochemical ocean models to climate variability in the North Pacific. The models' upper ocean pCO(2) and air-sea CO(2) flux respond similarly to climate variability on seasonal to decadal timescales. Modeled seasonal cycles of pCO(2) and its temperature- and non-temperature-driven components at three contrasting oceanographic sites capture the basic features found in observations (Takahashi et al., 2002, 2006; Keeling et al., 2004; Brix et al., 2004). However, particularly in the Western Subarctic Gyre, the models have difficulty representing the temporal structure of the total pCO(2) seasonal cycle because it results from the difference of these two large and opposing components. In all but one model, the air-sea CO(2) flux interannual variability (1 sigma) in the North Pacific is smaller ( ranges across models from 0.03 to 0.11 PgC/yr) than in the Tropical Pacific ( ranges across models from 0.08 to 0.19 PgC/yr), and the time series of the first or second EOF of the air-sea CO(2) flux has a significant correlation with the Pacific Decadal Oscillation (PDO). Though air-sea CO(2) flux anomalies are correlated with the PDO, their magnitudes are small ( up to +/- 0.025 PgC/yr ( 1 sigma)). Flux anomalies are damped because anomalies in the key drivers of pCO(2) ( temperature, dissolved inorganic carbon (DIC), and alkalinity) are all of similar magnitude and have strongly opposing effects that damp total pCO(2) anomalies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to declining biomass of Northeast Pacific groundfish in the late 1990s and to improve the scientific basis for management of the fishery, the Northwest Fisheries Science Center standardized and enhanced their annual bottom trawl survey in 2003. The survey was expanded to include the entire area along the U.S. west coast at depths of 55–1280 m. Coast-wide biomass and species richness significantly decreased during the first eight years (2003–10) of this fishery-independent survey. We observed an overall tendency toward declining biomass for 62 dominant taxa combined (fishery target and nontarget species) and four of seven subgroups (including cartilaginous fish, flatfishes, shelf rockfishes, and other shelf species), despite increasing or variable biomass trends in individual species. These decreases occurred during a period of reduced catch for groundfish along the shelf and upper slope regions relative to historical rates. We used information from multiple stock assessments to aggregate species into three groups: 1) with strong recruitment, 2) without strong recruitment in 1999, and 3) with unknown recruitment level. For each group, we evaluated whether declining biomass was primarily related to depletion (using year as a proxy) or environmental factors (i.e., variation in the Pacific Decadal Oscillation). According to Akaike’s information criterion, changes in aggregate biomass for species with strong recruitment were more closely related to year, whereas those with no strong recruitment were more closely related to climate. The significant decline in biomass for species without strong recruitment confirms that factors other than depletion of the exceptional 1999 year class may be responsible for the observed decrease in biomass along the U.S. west coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three prominent quasi-global patterns of variability and change are observed using the Met Office's sea surface temperature (SST) analysis and almost independent night marine air temperature analysis. The first is a global warming signal that is very highly correlated with global mean SST. The second is a decadal to multidecadal fluctuation with some geographical similarity to the El Niño–Southern Oscillation (ENSO). It is associated with the Pacific Decadal Oscillation (PDO), and its Pacific-wide manifestation has been termed the Interdecadal Pacific Oscillation (IPO). We present model investigations of the relationship between the IPO and ENSO. The third mode is an interhemispheric variation on multidecadal timescales which, in view of climate model experiments, is likely to be at least partly due to natural variations in the thermohaline circulation. Observed climatic impacts of this mode also appear in model simulations. Smaller-scale, regional atmospheric phenomena also affect climate on decadal to interdecadal timescales. We concentrate on one such mode, the winter North Atlantic Oscillation (NAO). This shows strong decadal to interdecadal variability and a correspondingly strong influence on surface climate variability which is largely additional to the effects of recent regional anthropogenic climate change. The winter NAO is likely influenced by both SST forcing and stratospheric variability. A full understanding of decadal changes in the NAO and European winter climate may require a detailed representation of the stratosphere that is hitherto missing in the major climate models used to study climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ichthyoplankton samples were collected at approximately 2-week intervals, primarily during spring and summer 1999−2004, from two stations located 20 and 30 km from shore near the Columbia River, Oregon. Northern anchovy (Engraulis mordax) was the most abundant species collected, and was the primary species associated with summer upwelling conditions, but it showed significant interannual and seasonal fluctuations in abundance and occurrence. Other abundant taxa included sanddabs (Citharichthys spp.), English sole (Parophrys vetulus), and blacksmelts (Bathylagidae). Two-way cluster analysis revealed strong species associations based primarily on season (before or after the spring transition date). Ichthyoplankton abundances were compared to biological and environmental data, and egg and larvae abundances were found to be most correlated with sea surface temperature. The Pacific Decadal Oscillation changed sign (from negative to positive) in late 2002 and indicated overall warmer conditions in the North Pacific Ocean. Climate change is expected to alter ocean upwelling, temperatures, and Columbia River flows, and consequently fish eggs and larvae distributions and survival. Long-term research is needed to identify how ichthyoplankton and fish recruitment are affected by regional and largescale oceanographic proces

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Continuous Plankton Recorder has been deployed on a seasonal basis in the north Pacific since 2000, accumulating a database of abundance measurements for over 290 planktonic taxa in over 3,500 processed samples. There is an additional archive of over 10,000 samples available for further analyses. Exxon Valdez Oil Spill Trustee Council financial support has contributed to about half of this tally, through four projects funded since 2002. Time series of zooplankton variables for sub-regions of the survey area are presented together with abstracts of eight papers published using data from these projects. The time series covers a period when the dominant climate signal in the north Pacific, the Pacific Decadal Oscillation (PDO), switched with unusual frequency between warm/positive states (pre-1999 and 2003-2006) and cool/negative states (1999-2002 and 2007). The CPR data suggest that cool negative years show higher biomass on the shelf and lower biomass in the open ocean, while the reverse is true in warm (PDO positive) years with lower shelf biomass (except 2005) and higher oceanic biomass. In addition, there was a delay in plankton increase on the Alaskan shelf in the colder spring of 2007, compared to the warmer springs of the preceding years. In warm years, smaller species of copepods which lack lipid reserves are also more common. Availability of the zooplankton prey to higher trophic levels (including those that society values highly) is therefore dependent on the timing of increase and peak abundance, ease of capture and nutritional value. Previously published studies using these data highlight the wide-ranging applicability of CPR data and include collaborative studies on; phenology in the key copepod species Neocalanus plumchrus, descriptions of distributions of decapod larvae and euphausiid species, the effects of hydrographic features such as mesoscale eddies and the North Pacific Current on plankton populations and a molecularbased investigation of macro-scale population structure in N. cristatus. The future funding situation is uncertain but the value of the data and studies so far accumulated is considerable and sets a strong foundation for further studies on plankton dynamics and interactions with higher trophic levels in the northern Gulf of Alaska.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seabirds are effective samplers of the marine environment, and can be used to measure resource partitioning among species and sites via food loads destined for chicks. We examined the composition, overlap, and relationships to changing climate and oceanography of 3,216 food loads from Least, Crested, and Whiskered Auklets (Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska during 1994–2006. Meals comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) that reflect secondary marine productivity, with no difference among Buldir, Kiska, and Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among species (mean Least–Crested Auklet overlap C = 0.68; Least–Whiskered Auklet overlap C = 0.96) and among sites, indicating limited partitioning of prey resources for auklets feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet food loads was related negatively to the summer (June–July–August) North Pacific Gyre Oscillation, while in Whiskered Auklet food loads, this was negatively related to the winter (December–January–February) Pacific Decadal Oscillation, both of which track basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic relationship between the biomass of calanoid copepods in Least Auklet food loads at all three study sites and summer (June–July) SST, with maximal copepod biomass between 3–6°C (r 2 = 0.71). Outside this temperature range, zooplankton becomes less available to auklets through delayed development. Overall, our results suggest that auklets are able to buffer climate-mediated bottom-up forcing of demographic parameters like productivity, as the composition of chick meals has remained constant over the course of our study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review summarises landform records and published age-estimates (largely based upon tephrochronology) to provide an overview of glacier fluctuations upon the Kamchatka Peninsula during the Holocene and, to a lesser degree, earlier phases of glaciation. The evidence suggests that following deglaciation from the Last Glacial Maximum (LGM), the peninsula experienced numerous phases of small-scale glacial advance. During the Late Glacial, moraine sequences appear to reflect the former presence of extensive glaciers in some parts of the peninsula, though little chronological control is available for deposits of this period. During the Holocene, the earliest and most extensive phase of advance likely occurred sometime prior to c. 6.8 ka, when glaciers extended up to 8 km beyond their current margins. However, these deposits lack maximum age constrains, and pre-Holocene ages cannot be discounted. Between c. 6.8 ka and the onset of ‘Neoglaciation’ c. 4.5 ka, there is little evidence of glacial advance upon the peninsula, and this period likely coincides with the Holocene climatic optimum (or ‘hypsithermal’). Since c. 4.5 ka, numerous moraines have been deposited, likely reflecting a series of progressively less extensive phases of ice advance during the Late Holocene. The final stage of notable ice advance occurred during the Little Ice Age (LIA), between c. 1350 and 1850 C.E., when reduced summer insolation in the Northern Hemisphere likely coincided with solar activity minima and several strong tropical volcanic eruptions to induce widespread cooling. Following the LIA, glaciers upon the peninsula have generally shown a pattern of retreat, with accelerated mass loss in recent decades. However, a number of prominent climatically and non-climatically controlled glacial advances have also occurred during this period. In general, there is evidence to suggest that millennial scale patterns in the extent and timing of glaciation upon the peninsula (encompassing much of the last glacial period) are governed by the extent of ice sheets in North America. Millennial-to-centennial scale fluctuations of Kamchatkan glaciers (encompassing much of the Holocene) are governed by the location and relative intensity of the Aleutian Low and Siberian High pressure systems. Decadal scale variations in glacier extent and mass balance (particularly since the LIA) are governed by inter-decadal climatic variability over the North Pacific (as reflected by the Pacific Decadal Oscillation), alongside a broader trend of hemispheric warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The terrestrial biosphere is subjected to a wide range of natural climatic oscillations. Best known is the El Niño–southern oscillation (ENSO) that exerts globally extensive impacts on crops and natural vegetation. A 50-year time series of ENSO events has been analysed to determine those geographical areas that are reliably impacted by ENSO events. Most areas are impacted by changes in precipitation; however, the Pacific Northwest is warmed by El Niño events. Vegetation gross primary production (GPP) has been simulated for these areas, and tests well against independent satellite observations of the normalized difference vegetation index. Analyses of selected geographical areas indicate that changes in GPP often lead to significant changes in ecosystem structure and dynamics. The Pacific decadal oscillation (PDO) is another climatic oscillation that originates from the Pacific and exerts global impacts that are rather similar to ENSO events. However, the longer period of the PDO provided two phases in the time series with a cool phase from 1951 to 1976 and a warm phase from 1977 to 2002. It was notable that the cool phase of the PDO acted additively with cool ENSO phases to exacerbate drought in the earlier period for the southwest USA. By contrast in India, the cool phase of the PDO appears to reduce the negative impacts of warm ENSO events on crop production.