958 resultados para Pacifastin light chain domain (PLD)
Resumo:
The pacifastin family, characterized by several conserved arrays of six cysteine residues, is a newly identified serine protease inhibitor (SPI) family discovered uniquely in arthropods and plays important roles in multiple biological processes. In the present study, the full-length cDNA of a pacifastin light chain (designated ESPLC) was cloned from the Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1036 bp ESPLC cDNA contained an 831 bp open reading frame (ORF) encoding a putative pacifastin-related peptide of 276 amino acids, a 5'-untranslated region (UTR) of 67 bp, and a 3'-UTR of 138 bp. Six putative conserved domains sharing a characteristic cysteine array (Cys-Xaa(9-12)-Cys-Asn-Xaa-Cys-Xaa-Cys-Xaa(2-3)-Gly-Xaa(3-4)-Cys-Thr-Xaa(3)-Cys) were identified in the deduced amino acid sequence of ESPLC. The conservation of these PLDs (pacifastin light chain domains) and the relative higher similarity of ESPLC to other pacifastin-related precursors suggested that ESPLC was a member of pacifastin family. The mRNA transcripts of ESPLC were found to be higher expressed in hepatopancreas, gill and haemolymph than in gonad, muscle and heart, with the highest expression level in hepatopancreas. The ESPLC mRNA expression in haemolymph of Chinese mitten crab was up-regulated at 2 h and 12 h after challenged with Listonella anguillarum. The tissue distribution and temporal characteristics of ESPLC mRNA expression, similar to that of prophenoloxidase gene in E. sinensis, suggested that ESPLC was potentially involved in the response against invading bacteria, with the possibility that it functioned in the prophenoloxidase system in E sinensis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Myosin is thought to generate movement of actin filaments via a conformational change between its light-chain domain and its catalytic domain that is driven by the binding of nucleotides and actin. To monitor this change, we have measured distances between a gizzard regulatory light chain (Cys 108) and the active site (near or at Trp 130) of skeletal myosin subfragment 1 (S1) by using luminescence resonance energy transfer and a photoaffinity ATP-lanthanide analog. The technique allows relatively long distances to be measured, and the label enables site-specific attachment at the active-site with only modest affect on myosin’s enzymology. The distance between these sites is 66.8 ± 2.3 Å when the nucleotide is ADP and is unchanged on binding to actin. The distance decreases slightly with ADP-BeF3, (−1.6 ± 0.3 Å) and more significantly with ADP-AlF4 (−4.6 ± 0.2 Å). During steady-state hydrolysis of ATP, the distance is temperature-dependent, becoming shorter as temperature increases and the complex with ADP⋅Pi is favored over that with ATP. We conclude that the distance between the active site and the light chain varies as Acto-S1-ADP ≈ S1-ADP > S1-ADP-BeF3 > S1-ADP-AlF4 ≈ S1-ADP-Pi and that S1-ATP > S1-ADP-Pi. The changes in distance are consistent with a substantial rotation of the light-chain binding domain of skeletal S1 between the prepowerstroke state, simulated by S1-ADP-AlF4, and the post-powerstroke state, simulated by acto-S1-ADP.
Resumo:
Some of the rules for how members of the calmodulin (CaM) superfamily bind to target peptides are revealed by the crystal structure of the regulatory domain of scallop myosin. The structure shows that the IQ motif of the heavy chain in this invertebrate myosin imposes constraints on both the positioning and conformation of the individual lobes of the light chains. In contrast, analysis of the contact residues in the targets bound by Ca(2+)-CaM reveals how the structure of CaM accommodates a broader range of sequences consonant with this protein's functional diversity.
Resumo:
Immunoglobulin light chain cDNA sequences of a perciform fish, the mandarin fish Siniperca chuatsi were amplified from head kidney mRNA by reverse transcription (RT)-PCR and RACE methods using degenerated primer and gene specific ones. In cDNA sequences of the VL region, nucleotide exchanges were present mainly within CDRs, although a lesser degree of variability was also found in FRs. Moreover, the length of CDRI and CDR3 in the mandarin fish is shorter than in most other fish species. In the middle of S. chuatsi CL region, a microsatellite sequence (AGC)(6-8) was found, which is also present in another perciform species, the spotted wolffish (Anarhichas minor). The comparison of amino acid sequence of the mandarin fish CL domain with those of other vertebrates showed the highest degree of similarity of 94.5% to the spotted wolffish, while the similarity with rainbow trout (Oncorhynchus mykiss) Ig L1 (62.7%) and channel catfish (Ictalurus punctatus) Ig LG (55.9%) isotypes is also higher. However, there is only 50% identity in the VL regions between the mandarin fish and the wolffish. The sequence similarity of the mandarin fish CL domain with those of higher vertebrate did not readily allow it to be classified as kappa or lambda isotype. The phylogenetic analyses also demonstrated that the CL genes of the mandarin fish and most other teleost fish cluster as a separate branch out of the mammal kappa and lambda branches. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In trematodes, there is a family of proteins which combine EF-hand-containing domains with dynein light chain (DLC)-like domains. A member of this family from the liver fluke, Fasciola hepatica-FhCaBP4-has been identified and characterised biochemically. FhCaBP4 has an N-terminal domain containing two imperfect EF-hand sequences and a C-terminal dynein light chain-like domain. Molecular modelling predicted that the two domains are joined by a flexible linker. Native gel electrophoresis demonstrated that FhCaBP4 binds to calcium, manganese, barium and strontium ions, but not to magnesium or zinc ions. The hydrophobic, fluorescent probe 8-anilinonaphthalene-1-sulphonate bound more tightly to FhCaBP4 in the presence of calcium ions. This suggests that the protein undergoes a conformational change on ion binding which increases the number of non-polar residues on the surface. FhCaBP4 was protected from limited proteolysis by the calmodulin antagonist W7, but not by trifluoperazine or praziquantel. Protein-protein cross-linking experiments showed that FhCaBP4 underwent calcium ion-dependent dimerisation. Since DLCs are commonly dimeric, it is likely that FhCaBP4 dimerises through this domain. The molecular model reveals that the calcium ion-binding site is located close to a key sequence in the DLC-like domain, suggesting a plausible mechanism for calcium-dependent dimerisation.
Resumo:
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the ß-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.
Resumo:
The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.
Resumo:
Dictyostelium myosin II is activated by phosphorylation of its regulatory light chain by myosin light chain kinase A (MLCK-A), an unconventional MLCK that is not regulated by Ca2+/calmodulin. MLCK-A is activated by autophosphorylation of threonine-289 outside of the catalytic domain and by phosphorylation of threonine-166 in the activation loop by an unidentified kinase, but the signals controlling these phosphorylations are unknown. Treatment of cells with Con A results in quantitative phosphorylation of the regulatory light chain by MLCK-A, providing an opportunity to study MLCK-A’s activation mechanism. MLCK-A does not alter its cellular location upon treatment of cells with Con A, nor does it localize to the myosin-rich caps that form after treatment. However, MLCK-A activity rapidly increases 2- to 13-fold when Dictyostelium cells are exposed to Con A. This activation can occur in the absence of MLCK-A autophosphorylation. cGMP is a promising candidate for an intracellular messenger mediating Con A-triggered MLCK-A activation, as addition of cGMP to fresh Dictyostelium lysates increases MLCK-A activity 3- to 12-fold. The specific activity of MLCK-A in cGMP-treated lysates is 210-fold higher than that of recombinant MLCK-A, which is fully autophosphorylated, but lacks threonine-166 phosphorylation. Purified MLCK-A is not directly activated by cGMP, indicating that additional cellular factors, perhaps a kinase that phosphorylates threonine-166, are involved.
Resumo:
Aggregation of Ig light chains to form amyloid fibrils is a characteristic feature of light-chain amyloidosis, a light-chain deposition disease. A recombinant variable domain of the light chain SMA was used to form amyloid fibrils in vitro. Fibril formation was monitored by atomic force microscopy imaging. Single filaments 2.4 nm in diameter were predominant at early times; protofibrils 4.0 nm in diameter were predominant at intermediate times; type I and type II fibrils 8.0 nm and 6.0 nm in diameter, respectively, were predominant at the endpoints. The increase in number of fibrils correlated with increased binding of the fluorescent dye thioflavin T. The fibrils and protofibrils showed a braided structure, suggesting that their formation involves the winding of protofibrils and filaments, respectively. These observations support a model in which two filaments combine to form a protofibril, two protofibrils intertwine to form a type I fibril, and three filaments form a type II fibril.
Resumo:
Phosphorylation of the regulatory light chain (RLC) activates the actin-dependent ATPase activity of Dictyostelium myosin II. To elucidate this regulatory mechanism, we characterized two mutant myosins, MyΔC1225 and MyΔC1528, which are truncated at Ala-1224 and Ser-1527, respectively. These mutant myosins do not contain the C-terminal assembly domain and thus are unable to form filaments. Their activities were only weakly regulated by RLC phosphorylation, suggesting that, unlike smooth muscle myosin, efficient regulation of Dictyostelium myosin II requires filament assembly. Consistent with this hypothesis, wild-type myosin progressively lost the regulation as its concentration in the assay mixture was decreased. Dephosphorylated RLC did not inhibit the activity when the concentration of myosin in the reaction mixture was very low. Furthermore, 3xAsp myosin, which does not assemble efficiently due to point mutations in the tail, also was less well regulated than the wild-type. We conclude that the activity in the monomer state is exempt from inhibition by the dephosphorylated RLC and that the complete regulatory switch is formed only in the filament structure. Interestingly, a chimeric myosin composed of Dictyostelium heavy meromyosin fused to chicken skeletal light meromyosin was not well regulated by RLC phosphorylation. This suggests that, in addition to filament assembly, some specific feature of the filament structure is required for efficient regulation.
Resumo:
The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP–heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.
Resumo:
Organelles in the axoplasm from the squid giant axon move along exogenous actin filaments toward their barbed ends. An approximately 235-kDa protein, the only band recognized by a pan-myosin antibody in Western blots of isolated axoplasmic organelles, has been previously proposed to be a motor for these movements. Here, we purify this approximately 235-kDa protein (p235) from axoplasm and demonstrate that it is a myosin, because it is recognized by a pan-myosin antibody and has an actin-activated Mg-ATPase activity per mg of protein 40-fold higher than that of axoplasm. By low-angle rotary shadowing, p235 differs from myosin II and it does not form bipolar filaments in low salt. The amino acid sequence of a 17-kDa protein that copurifies with p235 shows that it is a squid optic lobe calcium-binding protein, which is more similar by amino acid sequence to calmodulin (69% identity) than to the light chains of myosin II (33% identity). A polyclonal antibody to this light chain was raised by using a synthetic peptide representing the calcium binding domain least similar to calmodulin. We then cloned this light chain by reverse transcriptase-PCR and showed that this antibody recognizes the bacterially expressed protein but not brain calmodulin. In Western blots of sucrose gradient fractions, the 17-kDa protein is found in the organelle fraction, suggesting that it is a light chain of the p235 myosin that is also associated with organelles.
Resumo:
An immunoglobulin light chain protein was isolated from the urine of an individual (BRE) with systemic amyloidosis. Complete amino acid sequence of the variable region of the light chain (VL) protein established it as a kappa I, which when compared with other kappa I amyloid associated proteins had unique residues, including Ile-34, Leu-40, and Tyr-71. To study the tertiary structure, BRE VL was expressed in Escherichia coli by using a PCR product amplified from the patient BRE's bone marrow DNA. The PCR product was ligated into pCZ11, a thermal-inducible replication vector. Recombinant BRE VL was isolated, purified to homogeneity, and crystallized by using ammonium sulfate as the precipitant. Two crystal forms were obtained. In crystal form I the BRE VL kappa domain crystallizes as a dimer with unit cell constants isomorphous to previously published kappa protein structures. Comparison with a nonamyloid VL kappa domain from patient REI, identified significant differences in position of residues in the hypervariable segments plus variations in framework region (FR) segments 40-46 (FR2) and 66-67 (FR3). In addition, positional differences can be seen along the two types of local diads, corresponding to the monomer-monomer and dimer-dimer interfaces. From the packing diagram, a model for the amyloid light chain (AL) fibril is proposed based on a pseudohexagonal spiral structure with a rise of approximately the width of two dimers per 360 degree turn. This spiral structure could be consistent with the dimensions of amyloid fibrils as determined by electron microscopy.
Resumo:
The specific Ca2+ binding site that triggers contraction of molluscan muscle requires the presence of an essential light chain (ELC) from a Ca2+ binding myosin. Of the four EF hand-like domains in molluscan ELCs, only domain III has an amino acid sequence predicted to be capable of binding Ca2+. In this report, we have used mutant ELCs to locate the Ca2+ binding site in scallop myosin and to probe the role of the ELC in regulation. Point mutations in domain III of scallop ELC have no effect on Ca2+ binding. Interestingly, scallop and rat cardiac ELC chimeras support Ca2+ binding only if domain I is scallop. These results are nevertheless in agreement with structural studies on a proteolytic fragment of scallop myosin, the regulatory domain. Furthermore, Ca2+ sensitivity of the scallop myosin ATPase requires scallop ELC domain I: ELCs containing cardiac domain I convert scallop myosin to an unregulated molecule whose activity is no longer repressed in the absence of Ca2+. Despite its unusual EF hand domain sequence, our data indicate that the unique and required contribution of molluscan ELCs to Ca2+ binding and regulation of molluscan myosins resides exclusively in domain I.