864 resultados para PVC films
Resumo:
PVC films submitted to ultrasonic irradiation presented structural changes as probed by infrared measurements. These measurements showed some infrared bands alterations attributed to the increase concentration of some conformational isomers of PVC and the presence of some new species in the macromolecular matrix. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Blends of synthetic and biodegradable polymers can be important in attaining material plastic degradation in the environment. Biodegradation using soil and chorume (liquid waste from landfill) microorganisms is a promising area these days. This paper intends to study the PVC/PCL blend degradation in soil using aerobic biodegradation (Bartha respirometer). The morphology and structural changes of the blends were studied by FTIR, scanning electron microscopy, differential scanning calorimetry and contact angle measurements. Blend films prepared by the casting of dichloroethane solutions were buried in a Bartha respirometer containing soil and soil plus chorume and kept there for 120 days. During this time CO2 evolution was measured from time to time. The results showed that PCL films degrade faster than PVC/PCL and PVC films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The validation of analytical methods was carried out for di-(ethylhexyl) phthalate (DEHP) and adipate (DEHA) the determination of in PVC films. The level of DEHP and DEHA in samples was determined by leaving the film in contact with n-heptane during 48 hours and analysis in a gas chromatograph (GC) equipped with a flame ionization detector and fused silica column with 5% phenylmethyl silicone in the dimensions 30 m x 0.53 mm x 2.65 mm. The results for detection and the quantification limits were smaller than the restriction limits. The recovery rates of DEHP and DEHA were, respectively, 69.10 and 75.30 %.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The quality of plastic films used for horizontal silos is important to limit losses in the upper silage layer. The aim of this work was to study the effectiveness of different plastic films in reducing the top losses in maize silage. The following treatments were evaluated: (i) coextruded polyethylene/polyamide oxygen barrier film (OB), (ii) polyethylene film (PE), (iii) polyvinyl chloride film (PVC), and (iv) coextruded PE/polyvinyl alcohol film (PVOH). These treatments differed according to oxygen permeability with values of 75, 722, 982 and 289 cm(3) m(-2) per 24 hour respectively. OB and PVOH films had better temperature and fermentation profiles than the more permeable films. The OB film was effective in reducing the dry-matter (DM) losses during storage (82 g kg(-1)), and the PVOH film had an intermediate value of DM loss (101 g kg(-1)). PE and PVC films had higher losses (138 and 145 g kg(-1) respectively). Oxygen permeability of the films promoted a positive correlation with DM losses (P < 0.05; r2 = 0.945). The results indicate that O2 permeability through the plastic film is a crucial factor for maintaining silage quality in the upper layer of the silo when it is perfectly sealed.
Resumo:
The objective of this study was to investigate the influence of the level of minimal processing and modified atmosphere on the quality of 'Champagne' orange stored under refrigeration. The fruits were subjected to the following processing: a) whole fruit without flavedo; b) whole fruit without flavedo and albedo; and c) segmented into wedges and packed as follows: uncoated packaging (control); polyethylene film; PVC film; gelatin-based edible films (3%); and polyesthyrene translucent plastic container with a lid. The minimally processed oranges were stored at 5 ± 1°C for 8 days and were subjected to physicochemical and microbiological analyses every two days. Greater weight loss occurred in fruits without flavedo and segmented, uncoated, and coated with the edible gelatin film During storage, there was a slight increase in Total Soluble Solids (TSS) for the treatments with greater weight loss and reduction in acidity and ascorbic acid, regardless of the packaging type. The microbial counts did not exceed the acceptable limits in the treatments; however, higher counts were observed at the end of storage. The minimally processed fruit packed in lidded polystyrene containers and polyethylene and PVC films kept their overall fresh visual appearance with a few physicochemical and microbiological changes up to the 8th day of storage.
Resumo:
Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.
Resumo:
This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Estudou-se a manutenção da qualidade do abacaxi 'Pérola', utilizando-se de refrigeração e atmosfera modificada. Os frutos foram armazenados em ambiente com controle de temperatura a 8ºC e 90%UR, durante 17 dias, quando foram transferidos para condição de ambiente (25ºC, 75-80%UR). Eles foram avaliados na recepção, caracterizando-os, após 5; 9; 13 e 17 dias sob refrigeração, e depois de transferidos para as condições de ambiente, aos 21; 25 e 29 dias. O delineamento experimental utilizado foi o inteiramente casualizado, em esquema fatorial (6 x 8), tendo-se seis tratamentos (testemunha, duas ceras e três filmes plásticos) e oito épocas de avaliação. Os frutos foram avaliados quanto à coloração, ocorrência de podridões e de escurecimento interno, e a polpa avaliada quanto ao pH e aos teores de sólidos solúveis totais (SST), acidez total titulável (ATT), ácido ascórbico e açúcares solúveis, totais e redutores. Durante o armazenamento, observaram-se o amarelecimento dos frutos, o aumento no pH, na relação SST/ATT, e nos teores de açúcares solúveis, totais e redutores, que foram maiores após a transferência dos frutos para o ambiente. Os sintomas de injúria por chilling aumentaram com o tempo de armazenamento. Os tratamentos que modificam a atmosfera (embalagens e ceras) não influenciam significativamente nos principais atributos de qualidade do abacaxi 'Pérola', mas o uso de embalagem com PEBD e PVC atrasou o aparecimento de sintomas de escurecimento interno após a transferência dos frutos para a condição ambiente. Os frutos sem embalagem e os tratados com cera mostraram-se mais sensíveis à injúria por chilling, que se manifestou aos quatro dias após a remoção para o ambiente. A embalagem em PEBD e PVC retardou o aparecimento dos primeiros sintomas, em quatro dias.
Resumo:
The effect of deacetylated xanthan gum, additives (sucrose, soybean oil, sodium phosphate and propylene glycol) and pH modifications on mechanical properties, hydrophilicity and water activity of cassava starch-xanthan gum films has been studied. Sucrose addition resulted in the highest effect observed on cassava starch films elongation at break. The deacetylated xanthan gum had higher effect on elongation at break when comparing to the acetylated gum, although both gums presented an inferior effect in relation to the obtained with sucrose. However, when comparing to the control and PVC films, lower tensile strength resistance values were observed when adding sucrose. Increased water activity was observed for films added with sucrose, thus, increasing the material biodegradation. Sucrose and deacetylated xanthan gum addition resulted in a slight hydrophilicity increase. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)