982 resultados para PV systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a distributed communication based active power curtailment (APC) control scheme for grid connected photovoltaic (PV) systems to address voltage rise. A simple distribution feeder model is presented and simulated using MATLAB. The resource sharing based control scheme proposed is shown to be effective at reducing voltage rise during times of peak generation and low load. Simulations also show the even distribution of APC using simple communications. Simulations demonstrate the versatility of the proposed control method under major communication failure conditions. Further research may lead to possible applications in coordinated electric vehicle (EV) charging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating Photovoltaic (PV) systems with battery energy storage in the distribution network will be essential to allow for continued uptake of domestic PV system installations. With increasing concerns regarding environmental and climate change issues, incorporating sources of renewable energy into power networks across the world will be key for a sustainable future. Australia is well placed to utilise solar energy as a significant component of its future energy generation and within the last 5 years there has been a rapid growth in the penetration levels seen by the grid. This growth of PV systems is causing a number of issues including intermittency of supply, negative power flow and voltage rises. Using the simulator tool GridLAB-D with a model of a typical South-East Queensland (SEQ) 11 kV distribution feeder, the effect of various configurations of PV systems have been offset with Battery Energy Storage Systems (BESS). From this, combinations of PV and storage that are most effective at mitigating the issues were explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PV only generates electricity during daylight hours and primarily generates over summer. In the UK, the carbon intensity of grid electricity is higher during the daytime and over winter. This work investigates whether the grid electricity displaced by PV is high or low carbon compared to the annual mean carbon intensity using carbon factors at higher temporal resolutions (half-hourly and daily). UK policy for carbon reporting requires savings to be calculated using the annual mean carbon intensity of grid electricity. This work offers an insight into whether this technique is appropriate. Using half hourly data on the generating plant supplying the grid from November 2008 to May 2010, carbon factors for grid electricity at half-hourly and daily resolution have been derived using technology specific generation emission factors. Applying these factors to generation data from PV systems installed on schools, it is possible to assess the variation in the carbon savings from displacing grid electricity with PV generation using carbon factors with different time resolutions. The data has been analyzed for a period of 363 to 370 days and so cannot account for inter-year variations in the relationship between PV generation and carbon intensity of the electricity grid. This analysis suggests that PV displaces more carbon intensive electricity using half-hourly carbon factors than using daily factors but less compared with annual ones. A similar methodology could provide useful insights on other variable renewable and demand-side technologies and in other countries where PV performance and grid behavior are different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A test and demonstration facility for PV and PV hybrid systems and system components has been designed and installed at Dalarna University in Sweden. The facility allows studies of complete PV systems or single components in a range of 0.1-10 kW. The facility includes two grid-connected PV systems, a PV Hybrid off-grid system, three emulators and the necessary measurement and control equipment. Tests can be done manually or automatically through programmed test procedures controlled that will be implemented in Labview. The facility shall be used by researchers, professionals of the industry and engineering students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is to review the state of the art of residential PV systems in Belgium by the analysis of the operational data of 993 installations. For that, three main questions are posed: how much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? This work brings answers to these questions. A middling commercial PV system, optimally oriented, produces a mean annual energy of 892 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 6% inferior to optimally oriented PV systems. The mean performance ratio is 78% and the mean performance index is 85%. That is to say, the energy produced by a typical PV system in Belgium is 15% inferior to the energy produced by a very high quality PV system. Finally, on average, the real power of the PV modules falls 5% below its corresponding nominal power announced on the manufacturer's datasheet. Differences between real and nominal power of up to 16% have been detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is to review the state of the art of residential PV systems in France. This is done analyzing the operational data of 6868 installations. Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% and the mean Performance Index is 85%. That is to say, the energy produced by a typical PV system in France is 15% inferior to the energy produced by a very high quality PV system. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer's datasheet. A brief analysis by PV modules technology has led to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with heterojunction with intrinsic thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with the copper indium (di)selenide (CIS) modules show a real power that is 16% lower than their nominal value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is to review the state of the art of residential PV systems in France and Belgium. This is done analyzing the operational data of 10650 PV systems (9657 located in France and 993 in Belgium). Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp in France and 852 kWh/kWp in Belgium. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% in France and 78% in Belgium, and the mean Performance Index is 85% in both countries. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer?s datasheet. A brief analysis by PV modules technology has lead to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with Heterojunction with Intrinsic. Thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with Copper Indium (di)Selenide (CIS) modules show a real power that is 16 % lower than their nominal value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverter features are reviewed from a PV systems perspective, with a view to contributing to possible codes, procurement specifications and testing procedures, in order to assure the technical quality of these systems. A laboratory testing campaign has been carried out on a representative set of sixteen currently available inverters and a set of the most common AC appliances. The results of the tests are discussed with the aim of divulging the particular features of operating AC appliances in PV systems and the provisions to be taken into account in PV system design. The development of testing procedures has followed the motto ?keep it as simple as possible?, in order to make their application easier in conventional laboratories in developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of existing studies about LCA of PV systems has been carried out. The data from this review have been completed with our own figures in order to calculate the Energy Payback Time of double and horizontal axis tracking and fixed systems. The results of this metric span from 2 to 5 years for the latitude and global irradiation ranges of the geographical area comprised between −10◦ to 10◦ of longitude, and 30◦ to 45◦ of latitude. With the caution due to the uncertainty of the sources of information, these results mean that a GCPVS is able to produce back the energy required for its existence from 6 to 15 times during a life cycle of 30 years. When comparing tracking and fixed systems, the great importance of the PV generator makes advisable to dedicate more energy to some components of the system in order to increase the productivity and to obtain a higher performance of the component with the highest energy requirement. Both double axis and horizontal axis trackers follow this way, requiring more energy in metallic structure, foundations and wiring, but this higher contribution is widely compensated by the improved productivity of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper will present an open-source simulation tool, which is being developed in the frame of an European research project1. The tool, whose final version will be freely available through a website, allows the modelling and the design of different types of grid-connected PV systems, such as large grid-connected plants and building-integrated installations. The tool is based on previous software developed by the IES-UPM2, whose models and energy losses scenarios have been validated in the commissioning of PV projects3 carried out in Spain, Portugal, France and Italy, whose aggregated capacity is nearly 300MW. This link between design and commissioning is one of the key points of tool presented here, which is not usually addressed by present commercial software. The tool provides, among other simulation results, the energy yield, the analysis and breakdown of energy losses, and the estimations of financial returns adapted to the legal and financial frameworks of each European country. Besides, educational facilities will be developed and integrated in the tool, not only devoted to learn how to use this software, but also to train the users on the best design PV systems practices. The tool will also include the recommendation of several PV community experts, which have been invited to identify present necessities in the field of PV systems simulation. For example, the possibility of using meteorological forecasts as input data, or modelling the integration of large energy storage systems, such as vanadium redox or lithium-ion batteries. Finally, it is worth mentioning that during the verification and testing stages of this software development, it will be also open to the suggestions received from the different actors of the PV community, such as promoters, installers, consultants, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The installers and owners show a growing interest in the follow-up of the performance of their photovoltaic (PV) systems. The owners are requesting reliable sources of information to ensure that their system is functioning properly, and the installers are actively looking for efficient ways of providing them the most useful possible information from the data available. Policy makers are becoming increasingly interested in the knowledge of the real performance of PV systems and the most frequent sources of problems that they suffer to be able to target the identified challenges properly. The scientific and industrial PV community is also requiring an access to massive operational data to pursue the technological improvements further.