964 resultados para PV modules
Resumo:
This study is a literature review on laser scribing in monolithically interconnected thin-film PV modules, focusing on efficiency of modules based on absorber materials CIGS, CdTe and a-Si. In thin-film PV module manufacturing scribing is used to interconnect individual cells monolithically by P1, P2 and P3 scribes. Laser scribing has several advantages compared to mechanical scribing for this purpose. However, laser scribing of thin-films can be a challenging process and may induce efficiency reducing defects. Some of these defects can be avoided by improving optimisation or processing methods.
Resumo:
Photovoltaic modules based on thin film technology are gaining importance in the photovoltaic market, and module installers and plant owners have increasingly begun to request methods of performing module quality control. These modules pose additional problems for measuring power under standard test conditions (STC), beyond problems caused by the temperature of the module and the ambient variables. The main difficulty is that the modules’ power rates may vary depending both on the amount of time they have been exposed to the sun during recent hours and on their history of sunlight exposure. In order to assess the current state of the module, it is necessary to know its sunlight exposure history. Thus, an easily accomplishable testing method that ensures the repeatability of the measurements of the power generated is needed. This paper examines different tests performed on commercial thin film PV modules of CIS, a-Si and CdTe technologies in order to find the best way to obtain measurements. A method for obtaining indoor measurements of these technologies that takes into account periods of sunlight exposure is proposed. Special attention is paid to CdTe as a fast growing technology in the market.
Resumo:
Thin film photovoltaic (TF) modules have gained importance in the photovoltaic (PV) market. New PV plants increasingly use TF technologies. In order to have a reliable sample of a PV module population, a huge number of modules must be measured. There is a big variety of materials used in TF technology. Some of these modules are made of amorphous or microcrystalline silicon. Other are made of CIS or CdTe. Not all these materials respond the same under standard test conditions (STC) of power measurement. Power rates of the modules may vary depending on both the extent and the history of sunlight exposure. Thus, it is necessary a testing method adapted to each TF technology. This test must guarantee repeatability of measurements of generated power. This paper shows responses of different commercial TF PV modules to sunlight exposure. Several test procedures were performed in order to find the best methodology to obtain measurements of TF PV modules at STC in the easiest way. A methodology for indoor measurements adapted to these technologies is described.
Resumo:
Assuring the sustainability of quality in photovoltaic rural electrification programmes involves enhancing the reliability of the components of solar home systems as well as the characterization of the overall programme cost structure. Batteries and photovoltaic modules have a great impact on both the reliability and the cost assessment, the battery being the weakest component of the solar home system and consequently the most expensive element of the programme. The photovoltaic module, despite being the most reliable component, has a significant impact cost-wise on the initial investment, even at current market prices. This paper focuses on the in-field testing of both batteries and photovoltaic modules working under real operating conditions within a sample of 41 solar home systems belonging to a large photovoltaic rural electrification programme with more than 13,000 installed photovoltaic systems. Different reliability parameters such as lifetime have been evaluated, taking into account different factors, for example energy consumption rates, or the manufacturing quality of batteries. A degradation model has been proposed relating both loss of capacity and time of operation. The user e solar home system binomial is also analysed in order to understand the meaning of battery lifetime in rural electrification.
Resumo:
A complete characterisation of PV modules for building integration is needed in order to know their influence on the building’s global energy balance. Specifically, certain characteristic parameters should be obtained for each different PV module suitable for building integrated photovoltaics (BIPV), some by direct or indirect measurements at the laboratory, and others by monitoring the element performance mounted in real operating conditions. In the case of transparent building envelopes it is particularly important to perform an optical and thermal characterization of the PV modules that would be integrated in them. This paper addresses the optical characterization of some commercial thin-film PV modules having different degrees of transparency, suitable for building integration in façades. The approach is based on the measurement of the spectral UV/Vis/NIR reflectance and transmittance of the different considered samples, both at normal incidence and as a function of the angle of incidence. With the obtained results, the total and zoned UV, visible and NIR transmission and reflection values are calculated, enabling the correct characterization of the PV modules integrated in façades and the subsequent evaluation of their impact over the electrical, thermal and lighting performance in a building.
Resumo:
A new method has recently been proposed by us for accurate measurement of the solar cell temperature in any operational regime, in particular, at a maximum power point (MPP) of the I-V curve (T-p-n(MPP)). For this, fast switching of a cell from MPP to open circuit (OC) regime is carried out and open circuit voltage V-oc is measured immediately (within about 1 millisecond), so that this value becomes to be an indicator of T-p-n(MPP). In the present work, we have considered a practical case, when a solar cell is heated not only by absorption of light incident upon its surface (called "photoactive" absorption of power), but also by heat transferred from structural elements surrounding the cell and heated by absorption of direct or diffused sunlight ("non-photoactive" absorption of power with respect to a solar cell). This process takes place in any concentrator module with non-ideal concentrators. Low overheating temperature of the p-n junction (or p-n junctions in a multijunction cell) is a cumulative parameter characterizing the quality of a solar module by the factor of heat removal effectiveness and, at the same time, by the factor of low "non-photoactive" losses.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
The paper analyses empirical performance data of five commercial PV-plants in Germany. The purpose was on one side to investigate the weak light performance of the different PV-modules used. On the other hand it was to quantify and compare the shading losses of different PV-array configurations. The importance of this study relies on the fact that even if the behavior under weak light conditions or the shading losses might seem to be a relatively small percentage of the total yearly output; in projects where a performance guarantee is given, these variation can make the difference between meeting or not the conditions.When analyzing the data, a high dispersion was found. To reduce the optical losses and spectral effects, a series of data filters were applied based on the angle of incidence and absolute Air Mass. To compensate for the temperature effects and translate the values to STC (25°C), five different methods were assessed. At the end, the Procedure 2 of IEC 60891 was selected due to its relative simplicity, usage of mostly standard parameters found in datasheets, good accuracy even with missing values, and its potential to improve the results when the complete set of inputs is available.After analyzing the data, the weak light performance of the modules did not show a clear superiority of a certain technology or technology group over the others. Moreover, the uncertainties in the measurements restrictive the conclusiveness of the results.In the partial shading analysis, the landscape mounting of mc-Si PV-modules in free-field showed a significantly better performance than the portrait one. The cross-table string using CIGS modules did not proved the benefits expected and performed actually poorer than a regular one-string-per-table layout. Parallel substrings with CdTe showed a proper functioning and relatively low losses. Among the two product generations of CdTe analyzed, none showed a significantly better performance under partial shadings.
Resumo:
A common problem when planning large free field PV-plants is optimizing the ground occupation ratio while maintaining low shading losses. Due to the complexity of this task, several PV-plants have been built using various configurations. In order to compare the shading losses of different PV technologies and array designs, empirical performance data of five free field PV-plants operating in Germany was analyzed. The data collected comprised 140 winter days from October 2011 until March 2012. The relative shading losses were estimated by comparing the energy output of selected arrays in the front rows (shading-free) against that of shaded arrays in the back rows of the same plant. The results showed that landscape mounting with mc-Si PV-modules yielded significantly better results than portrait one. With CIGS modules, making cross-table strings using the lower modules was not beneficial as expected and had more losses than a one-string-per-table layout. Parallel substrings with CdTe showed relatively low losses. Among the two CdTe products analyzed, none showed a significantly better performance.
Resumo:
This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
Two-stage isolated converters for photovoltaic (PV) applications commonly employ a high-frequency transformer on the DC-DC side, submitting the DC-AC inverter switches to high voltages and forcing the use of IGBTs instead of low-voltage and low-loss MOSFETs. This paper shows the modeling, control and simulation of a single-phase full-bridge inverter with high-frequency transformer (HFT) that can be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC inverter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the PResonant current control regulator. A high-frequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. © 2012 IEEE.
Resumo:
The use of modular or ‘micro’ maximum power point tracking (MPPT) converters at module level in series association, commercially known as “power optimizers”, allows the individual adaptation of each panel to the load, solving part of the problems related to partial shadows and different tilt and/or orientation angles of the photovoltaic (PV) modules. This is particularly relevant in building integrated PV systems. This paper presents useful behavioural analytical studies of cascade MPPT converters and evaluation test results of a prototype developed under a Spanish national research project. On the one hand, this work focuses on the development of new useful expressions which can be used to identify the behaviour of individual MPPT converters applied to each module and connected in series, in a typical grid-connected PV system. On the other hand, a novel characterization method of MPPT converters is developed, and experimental results of the prototype are obtained: when individual partial shading is applied, and they are connected in a typical grid connected PV array
Resumo:
The main objective of this paper is to review the state of the art of residential PV systems in Belgium by the analysis of the operational data of 993 installations. For that, three main questions are posed: how much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? This work brings answers to these questions. A middling commercial PV system, optimally oriented, produces a mean annual energy of 892 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 6% inferior to optimally oriented PV systems. The mean performance ratio is 78% and the mean performance index is 85%. That is to say, the energy produced by a typical PV system in Belgium is 15% inferior to the energy produced by a very high quality PV system. Finally, on average, the real power of the PV modules falls 5% below its corresponding nominal power announced on the manufacturer's datasheet. Differences between real and nominal power of up to 16% have been detected.