995 resultados para PULMONARY ALVEOLAR MACROPHAGES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thalidomide is a selective inhibitor of tumor necrosis factor-alpha (TNF-alpha), a cytokine involved in mycobacterial death mechanisms. We investigated the role of this drug in the functional activity of alveolar macrophages in the presence of infection induced by intranasal inoculation of Mycobacterium avium in thalidomide-treated and untreated adult Swiss mice. Sixty animals were inoculated with 5 x 10(6) M. avium by the respiratory route. Thirty animals received daily thalidomide (30 mg/kg mouse) and 30 received water by gavage up to sacrifice. Ten non-inoculated mice were used as a control group. Lots of animals from each group were evaluated until 6 weeks after inoculation. Infection resulted in an increased total number of inflammatory cells as well as increased activity of pulmonary macrophages. Histologically, intranasal inoculation of bacilli resulted in small mononuclear infiltrates located at the periphery of the organ. Culture of lung fragments revealed the presence of bacilli only at the beginning and at the end of the experimental period. Thalidomide administration did not affect the microbiological or histological features of the infection. Thalidomide-treated and untreated animals showed the same amount of M. avium colonies 3 weeks after infection. Although it did not affect bacillary clearance, thalidomide administration resulted in a decreased percent of spread cells and release of hydrogen peroxide, suggesting that factors other than TNF-alpha play a role in the killing of mycobacteria by alveolar macrophages. Thalidomide administration also reduced the number of spread cells among resident macrophages, suggesting a direct effect of the drug on this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well-documented that leukotrienes (LTs) are released in allergic lung inflammation and that they participate in the physiopathology of asthma. A role for LTs in innate immunity has recently emerged: Cys-LTs were shown to enhance Fc gamma R-mediated phagocytosis by alveolar macrophages (AMs). Thus, using a rat model of asthma, we evaluated Fc gamma R-mediated phagocytosis and killing of Klebsiella pneumoniae by AMs. The effect of treatment with a cys-LT antagonist (montelukast) on macrophage function was also investigated. Male Wistar rats were immunized twice with OVA/alumen intraperitoneally and challenged with OVA aerosol. After 24 h, the animals were killed, and the AMs were obtained by bronchoalveolar lavage. Macrophages were cultured with IgG-opsonized red blood cells (50: 1) or IgG-opsonized K. pneumoniae (30: 1), and phagocytosis or killing was evaluated. Leukotriene C(4) and nitric oxide were quantified by the EIA and Griess methods, respectively. The results showed that AMs from sensitized and challenged rats presented a markedly increased phagocytic capacity via Fc gamma R (10X compared to controls) and enhanced killing of K. pneumoniae (4X higher than controls). The increased phagocytosis was inhibited 15X and killing 3X by treatment of the rats with montelukast, as compared to the non-treated group. cys-LT addition increased phagocytosis in control AMs but had no effect on macrophages from allergic lungs. Montelukast reduced nitric oxide (39%) and LTC(4) (73%). These results suggest that LTs produced during allergic lung inflammation potentiate the capacity of AMs to phagocytose and kill K. pneumonia via Fc gamma R. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In alveolar macrophages, leukotriene (IT) B(4) and cysteinyl LTs (LTC(4), LTD(4) and LTE(4)) both enhance Fc gamma receptor (Fc gamma R)-mediated phagocytosis. In the present study we investigated the role of specific PKC isoforms (PKC-alpha and -delta), the MAP kinases p38 and ERK 1/2, and PI3K in mediating the potentiation of Fc gamma R-mediated phagocytosis induced by addition of leukotrienes to the AMs. It was found that exogenously added LTB(4) and LTD(4) both enhanced PKC-delta and -alpha phosphorylation during Fc gamma R engagement. Studies with isoform-selective inhibitors indicated that exogenous LTB(4) effects were dependent on both PKC-alpha and -delta, while LTD(4) effects were exclusively due to PKC-delta activation. Although both exogenous LTB(4) and LTD(4) enhanced p38 and ERK 1/2 activation, LTB(4) required only ERK 1/2, while LTD(4) required only p38 activation. Activation by both LTs was dependent on PI3K activation. Effects of endogenous LTs on kinase activation were also investigated using selective LT receptor antagonists. Endogenous LTB(4) contributed to Fc gamma R-mediated activation of PKC-alpha, ERK 1/2 and PI3K, while endogenous cysLTs contributes to activation of PKC-delta, p38 and PI3K. Taken together, our data show that the capacities of LTB(4) and LTD(4) to enhance Fc gamma R-mediated phagocytosis reflect their differential activation of specific kinase programs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thalidomide is a selective inhibitor of tumor necrosis factor-alpha (TNF-alpha), a cytokine involved in mycobacterial death mechanisms. We investigated the role of this drug in the functional activity of alveolar macrophages in the presence of infection induced by intranasal inoculation of Mycobacterium avium in thalidomide-treated and untreated adult Swiss mice. Sixty animals were inoculated with 5 x 10(6) M. avium by the respiratory route. Thirty animals received daily thalidomide (30 mg/kg mouse) and 30 received water by gavage up to sacrifice. Ten non-inoculated mice were used as a control group. Lots of animals from each group were evaluated until 6 weeks after inoculation. Infection resulted in an increased total number of inflammatory cells as well as increased activity of pulmonary macrophages. Histologically, intranasal inoculation of bacilli resulted in small mononuclear infiltrates located at the periphery of the organ. Culture of lung fragments revealed the presence of bacilli only at the beginning and at the end of the experimental period. Thalidomide administration did not affect the microbiological or histological features of the infection. Thalidomide-treated and untreated animals showed the same amount of M. avium colonies 3 weeks after infection. Although it did not affect bacillary clearance, thalidomide administration resulted in a decreased percent of spread cells and release of hydrogen peroxide, suggesting that factors other than TNF-alpha play a role in the killing of mycobacteria by alveolar macrophages. Thalidomide administration also reduced the number of spread cells among resident macrophages, suggesting a direct effect of the drug on this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in the development of pulmonary silicosis have not been well defined, however most current evidence implicates a central role for alveolar macrophages in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in alveolar macrophage (AM). The overall goal of this study was to determine the mechanism of silica-induced apoptosis of AM. Human AM were treated with fibrogenic, poorly fibrogenic and nonfibrogenic model particulates, such as, silica, amorphous silica and titanium dioxide, respectively (equal surface area). Treatment with silica resulted in apoptosis in human AM as observed by morphology, DNA fragmentation and Cell Death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitors, polyinosinic acid (Poly I), fucoidan and high density lipoprotein (HDL), prior to silica treatment. Pretreatment with Poly I and fucoidan resulted in significant inhibition of silica-induced apoptosis suggesting that silica-induced AM apoptosis is mediated via the SR. Further, we examined the involvement of interleukin converting enzyme (ICE) family of proteases in silica-mediated apoptosis. Silica activated ICE, Ich-1L, cpp32 beta and cleavage of PARP. Taken together, these results suggested that (1) fibrogenic particulates, such as, silica caused apoptosis of alveolar macrophages, (2) this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis, (3) silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, and (4) silica-induced apoptosis involves the activation of the ICE family of proteases. An understanding of the molecular events involved in fibrogenic particulate-induced apoptosis may provide a useful insight into the mechanism involved in particulate-induced fibrosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms regulating systemic and mucosal IgA responses in the respiratory tract are incompletely understood. Using virus-like particles loaded with single-stranded RNA as a ligand for TLR7, we found that systemic vs mucosal IgA responses in mice were differently regulated. Systemic IgA responses following s.c. immunization were T cell independent and did not require TACI or TGFbeta, whereas mucosal IgA production was dependent on Th cells, TACI, and TGFbeta. Strikingly, both responses required TLR7 signaling, but systemic IgA depended upon TLR7 signaling directly to B cells whereas mucosal IgA required TLR7 signaling to lung dendritic cells and alveolar macrophages. Our data show that IgA switching is controlled differently according to the cell type receiving TLR signals. This knowledge should facilitate the development of IgA-inducing vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent publications have demonstrated that the protease caspase-1 is responsible for the processing of pro-interleukin 18 (IL-18) into the active form. Studies on cell lines and murine macrophages have shown that the bacterial invasion factor SipB activates caspase-1, triggering cell death. Thus, we investigated the role of SipB in the activation and release of IL-18 in human alveolar macrophages (AM), which are the first line of defense against inhaled pathogens. Under steady-state conditions, AM are a more important source of IL-18 than are dendritic cells (DC) and monocytes. Cytokine production by AM and DC was compared after both types of cells had been infected with a virulent strain of Salmonella enterica serovar Typhimurium and an isogenic sipB mutant, which were used as an infection model. Infection with virulent Salmonella led to marked cell death with features of apoptosis while both intracellular activation and release of IL-18 were demonstrated. In contrast, the sipB mutant did not induce such cell death or the release of active IL-18. The specific caspase-1 inhibitor Ac-YVAD-CMK blocked the early IL-18 release in AM infected with the virulent strain. However, the type of Salmonella infection did not differentially regulate IL-18 gene expression. We concluded that the bacterial virulence factor SipB plays an essential posttranslational role in the intracellular activation of IL-18 and the release of the cytokine in human AM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractObjective:The present study was aimed at retrospectively reviewing high-resolution computed tomography (HRCT) findings in patients with pulmonary alveolar microlithiasis in order to evaluate the frequency of tomographic findings and their distribution in the lung parenchyma.Materials and Methods:Thirteen patients (9 females and 4 males; age, 9 to 59 years; mean age, 34.5 years) were included in the present study. The HRCT images were independently evaluated by two observers whose decisions were made by consensus. The inclusion criterion was the presence of abnormalities typical of pulmonary alveolar microlithiasis at HRCT, which precludes lung biopsy. However, in 6 cases lung biopsy was performed.Results:Ground-glass opacities and small parenchymal nodules were the predominant tomographic findings, present in 100% of cases, followed by small subpleural nodules (92.3%), subpleural cysts (84.6%), subpleural linear calcifications (69.2%), crazy-paving pattern (69.2%), fissure nodularity (53.8%), calcification along interlobular septa (46.2%) and dense consolidation (46.2%).Conclusion:As regards distribution of the lesions, there was preferential involvement of the lower third of the lungs. No predominance of distribution in axial and anteroposterior directions was observed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le syndrome reproducteur et respiratoire porcin (SRRP) est la maladie infectieuse la plus économiquement importante de l’industrie porcine. Une étude récente a démontré que le surnageant de culture d’Actinobacillus pleuropneumoniae (App) inhibe l’infection du virus SRRP (VSRRP) in vitro dans des cellules de singe. L’objectif de cette étude est de démontrer l’effet antiviral d’App contre le VSRRP dans les cellules cibles du virus in vivo: les macrophages alvéolaires porcins (MAPs) et d’étudier les mécanismes spécifiques impliqués lors de l’inhibition virale. Les MAPs ont été traités avec App, avant et après l’infection avec le VSRRP. À différents temps post-infection, la réplication et la transcription du génome viral ont été quantifiées. L’expression des interférons (IFN) type I et II, ainsi que le profil protéomique en présence ou absence d’App ont été évalués. L’expression de certaines protéines a été confirmée par immunobuvardage et immunofluorescence (IF). Les résultats ont démontré que l’effet antiviral d’App n’est pas via l’induction des IFN type I et II. App inhibe l’infection virale dans MAPs avant la réplication et la transcription du génome viral, ce qui indique qu’App inhibe précocement le cycle réplicatif viral. Le profil protéomique a révélé qu’App augmentait l’expression de la cofiline, une protéine qui provoque la dépolymérisation de l’actine. De plus, ce phénomène de dépolymérisation a été confirmé par IF. Le traitement des MAPs avec la cytochalasin D (un composé qui provoque la fragmentation des microfilments) a démontré que comme pour App, cette drogue inhibe la réplication virale. Les résultats obtenus suggèrent que l’effet antiviral d’App est via l'activation de la cofiline et dépolymérisation de l’actine, affectant probablement l’endocytose du VSRRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The systemic inflammatory response syndrome ( SIRS) is triggered by lipopolysaccharide (LPS) from Gram-negative bacteria. Insulin was shown to have a protective role in SIRS related to sepsis. Lungs are particularly affected in this condition and provide a second wave of mediators/cytokines which amplifies SIRS. The aim of the present study was to investigate the effect of insulin on the signaling pathways elicited by LPS in alveolar macrophages (AMs) and its consequence in cellular response to LPS measured as production of tumor necrosis factor (TNF). To this purpose, resident AMs from male Wistar rats were obtained by lung lavage and stimulated by LPS ( 100 ng/mL). Insulin ( 1 mU/mL) was added 10 min before LPS. Activation ( phosphorylation) of signaling molecules by LPS was analyzed by western blot, 30 min after LPS stimulation. TNF was measured in the AMs culture supernatants by bioassay using L-929 tumor cells. Relative to controls, LPS induced a significant increase in the activation of ERK (3.6-fold), p38 (4.4-fold), Tyr-326 Akt (4.7-fold), Ser-473 Akt (6.9-fold), PKCa (4.7-fold) and PKCd (2.3-fold). Treatment of AMs with insulin before LPS stimulation, significantly reduced the activation of ERK (54%), p38 (48%), Tyr-326 Akt (64%), Ser-473 Akt (41%), PKCa (62%) and PKCd (39%). LPS induced TNF production in AMs which was also inhibited by insulin (60%). These results show that insulin down-regulates MAPK, PI3K and PKCs and inhibits a downstream effect of LPS, TNF production, in rat AMs stimulated with LPS and suggest that the protective effect of insulin in sepsis could be through modulation of signal transduction pathways elicited by LPS in lung macrophages. Copyright (c) 2008 S. Karger AG, Basel.