263 resultados para PUFA
Resumo:
Red meat from grass-fed animals, compared with concentrate-fed animals, contains increased concentrations of long-chain (LC) n-3 PUPA. However, the effects of red meat consumption from grass-fed animals on consumer blood concentrations of LC n-3 PUFA are unknown. The aim of the present study was to compare the effects on plasma and platelet LC n-3 PUFA status of consuming red meat produced from either grass-fed animals or concentrate-fed animals. A randomised, double-blinded, dietary intervention study was carried out for 4 weeks on healthy subjects who replaced their habitual red meat intake with three portions per week of red meat (beef and lamb) from animals offered a finishing diet of either grass or concentrate (n 20 consumers). Plasma and platelet fatty acid composition, dietary intake, blood pressure, and serum lipids and lipoproteins were analysed at baseline and post-intervention. Dietary intakes of total n-3 PUFA, as well as plasma and platelet concentrations of LC n-3 PUFA, were significantly higher in those subjects who consumed red meat from grass-fed animals compared with those who consumed red meat from concentrate-fed animals (P<0.05). No significant differences in concentrations of serum cholesterol, TAG or blood pressure were observed between groups. Consuming red meat from grass-fed animals compared with concentrate-fed animals as part of the habitual diet can significantly increase consumer plasma and platelet LC n-3 PUFA status. As a result, red meat from grass-fed animals may contribute to dietary intakes of LC n-3 PUFA in populations where red meat is habitually consumed.
Resumo:
Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2015
Resumo:
The effects of feeding of 6-propyllhiouracil (6-I'fU) and potyunsaturatcd fatty acids (I'UFA) independently and ill combination and administration (ip) of a single close of Iriiodothyronine (I',) (2.51ig/IOOg body wl) along with feeding of 6- PTU and PUFA were studied in cal brain. Dopamine (DA), 5-hydroxytryplophan (5-IIl'I'), serolouin (5-Ill), 5-hydioxy indole acetic acid (5-111AA), norepinephrine (NF) :uul ceinephrinn (I?I'l) contenls were assayed in the hypothalannls and ccrc bral cortex regions. It was found that 6-P"l'U Iccding resulted in decrease in dopamine, 5-III', 5 II I I' and 5 IIiAA in both regions. In animals fed wills PUFA followed by adnliuislralion of T,. the I)A level was found normal.
Resumo:
Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0 center dot 1-0 center dot 5hairspg/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alpha LNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alpha LNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alpha LNA-feeding studies and stable-isotope studies using alpha LNA, which have addressed the question of bioconversion of alpha LNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (< 0 center dot 1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alpha LNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta 6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.
Resumo:
Background: Indian Asians living in Western Countries have an over 50% increased risk of coronary heart disease (CHD) relative to their Caucasians counterparts. The atherogenic lipoprotein phenotype (ALP), which is more prevalent in this ethnic group, may in part explain the increased risk. A low dietary long chain n-3 fatty acid (LC n-3 PUFA) intake and a high dietary n-6 PUFA intake and n-6:n-3 PUFA ratio in Indian Asians have been proposed as contributors to the increased ALP incidence and CHD risk in this subgroup. Aim: To examine the impact of dietary n-6:n-3 PUFA ratio on membrane fatty acid composition, blood lipid levels and markers of insulin sensitivity in Indian Asians living in the UK. Methods: Twenty-nine males were assigned to either a moderate or high n-6:n-3 PUFA (9 or 16) diet for 6 weeks. Fasting blood samples were collected at baseline and 6 weeks for analysis of triglycerides, total-, LDL- and HDL- cholesterol, non-esterified fatty acids, glucose, insulin, markers of insulin sensitivity and C-reactive protein. Results: Group mean saturated fatty acid, MUFA, n-6 PUFA and n-3 PUFA on the moderate and high n-6:n-3 PUFA diets were 26 g/d, 43 g/d, 15 g/d, 2 g/d and 25 g/d, 25 g/d, 28 g/d, 2 g/d respectively. A significantly lower total membrane n-3 PUFA and a trend towards lower EPA and DHA levels were observed following the high n-6:n-3 PUFA diet. However no significant effect of treatment on plasma lipids was evident. There was a trend towards a loss of insulin sensitivity on the high n-6:n-3 PUFA diet, with the increase in fasting insulin (P = 0.04) and HOMA IR [(insulin x glucose)/22.5] (P = 0.02) reaching significance. Conclusion: The results of the current study suggest that, within the context of a western diet, it is unlikely that dietary n-6:n-3 PUFA ratio has any major impact on the levels of LC n-3 PUFA in membrane phospholipids or have any major clinically relevant impact on insulin sensitivity and its associated dyslipidaemia.
Resumo:
Indian Asians living in the UK have a 50% higher CHD mortality rate compared with the indigenous Caucasian population, which cannot be attributed to traditional risk factors. Instead, features of the metabolic syndrome, including raised plasma triacylglycerol, reduced HDL-cholesterol (HDL-C) and an increased proportion of small dense LDL particles, together with insulin resistance and central obesity, are prevalent among this population. The present review examines evidence to support the hypothesis that an imbalance in dietary PUFA intake, specifically a higher intake of n-6 PUFA in combination with a lower intake of the long-chain (LC) n-3 PUFA, plays an important role in the prevalence of the metabolic syndrome observed in Indian Asians. Data are presented to illustrate the impact of manipulation of the background n-6 PUFA intake (moderate or high n-6 PUFA) and the subsequent response to supplementation with LC n-3 PUFA on blood lipids and insulin action in a group of Indian Asian volunteers. The results demonstrate that supplementation with LC n-3 PUFA had no impact on insulin action in those subjects consuming either the moderate-or high-n-6 PUFA diet. In the postprandial phase reductions in plasma triacylglycerol concentrations were greater in those consuming the high-n-6 PUFA background diet subsequent to fish oil supplementation. The present study concludes that, contrary to the central hypothesis, the prevalence of metabolic abnormalities in Indian Asians compared with Caucasians may not be attributable to differences in intakes of n-6 and n-3 PUFA.
Resumo:
Background & aims The consumption of long chain n − 3 polyunsaturated fatty acids (LC n − 3 PUFA) is known to be cardio-protective. Data on the influence of LC n − 3 PUFA on arterial stiffness in the postprandial state is limited. The aim of this study was to investigate the acute effects of a LC n − 3 PUFA-rich meal on measures of arterial stiffness. Methods Twenty-five healthy subjects (12 men, 13 women) received a control and a LC n − 3 PUFA-rich meal on two occasions in a random order. Arterial stiffness was measured at baseline, 30, 60, 90, 120, 180 and 240 min after meal consumption by pulse wave analysis and digital volume pulse to derive an augmentation index and a stiffness index respectively. Blood samples were taken for measurement of lipids, glucose and insulin. Results Consumption of the LC n − 3 PUFA-rich meal had an attenuating effect on augmentation index (P = 0.02) and stiffness index (P = 0.03) compared with the control meal. A significant treatment effect (P = 0.036) was seen for plasma non-esterified fatty acids concentrations. Conclusions These data indicate that acute LC n − 3 PUFA-rich meal consumption can improve postprandial arterial stiffness. This has important implications for the beneficial properties of LC n − 3 PUFA and cardiovascular risk reduction.
Resumo:
With the wide acceptance of the long-chain (LC) n-3 PUFA EPA and DHA as important nutrients playing a role in the amelioration of certain diseases, efforts to understand factors affecting intakes of these fatty acids along with potential strategies to increase them are vital. Widespread aversion to oil-rich fish, the richest natural source of EPA and DHA, highlights both the highly suboptimal current intakes in males and females across all age-groups and the critical need for an alternative supply of EPA and DHA. Poultry meat is a popular and versatile food eaten in large quantities relative to other meats and is open to increased LC n-3 PUFA content through manipulation of the chicken's diet to modify fatty acid deposition and therefore lipid composition of the edible tissues. It is therefore seen as a favourable prototype food for increasing human dietary supply of LC n-3 PUFA. Enrichment of chicken breast and leg tissue is well established using fish oil or fishmeal, but concerns about sustainability have led to recent consideration of algal biomass as an alternative source of LC n-3 PUFA. Further advances have also been made in the quality of the resulting meat, including achieving acceptable flavour and storage properties as well as understanding the impact of cooking on the retention of fatty acids. Based on these considerations it may be concluded that EPA- and DHA-enriched poultry meat has a very positive potential future in the food chain.
Resumo:
Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.
Resumo:
Vascular dysfunction is recognised as an integrative marker of CVD. While dietary strategies aimed at reducing CVD risk include reductions in the intake of SFA, there are currently no clear guidelines on what should replace SFA. The purpose of this review was to assess the evidence for the effects of total dietary fat and individual fatty acids (SFA, MUFA and n-6 PUFA) on vascular function, cellular microparticles and endothelial progenitor cells. Medline was systematically searched from 1966 until November 2010. A total of fifty-nine peer-reviewed publications (covering fifty-six studies), which included five epidemiological, eighteen dietary intervention and thirty-three test meal studies, were identified. The findings from the epidemiological studies were inconclusive. The limited data available from dietary intervention studies suggested a beneficial effect of low-fat diets on vascular reactivity, which was strongest when the comparator diet was high in SFA, with a modest improvement in measures of vascular reactivity when high-fat, MUFA-rich diets were compared with SFA-rich diets. There was consistent evidence from the test meal studies that high-fat meals have a detrimental effect on postprandial vascular function. However, the evidence for the comparative effects of test meals rich in MUFA or n-6 PUFA with SFA on postprandial vascular function was limited and inconclusive. The lack of studies with comparable within-study dietary fatty acid targets, a variety of different study designs and different methods for determining vascular function all confound any clear conclusions on the impact of dietary fat and individual fatty acids on vascular function.
Resumo:
With the substantial economic and social burden of CVD, the need to modify diet and lifestyle factors to reduce risk has become increasingly important. Milk and dairy products, being one of the main contributors to SFA intake in the UK, are a potential target for dietary SFA reduction. Supplementation of the dairy cow's diet with a source of MUFA or PUFA may have beneficial effects on consumers' CVD risk by partially replacing milk SFA, thus reducing entry of SFA into the food chain. A total of nine chronic human intervention studies have used dairy products, modified through bovine feeding, to establish their effect on CVD risk markers. Of these studies, the majority utilised modified butter as their primary test product and used changes in blood cholesterol concentrations as their main risk marker. Of the eight studies that measured blood cholesterol, four reported a significant reduction in total and LDL-cholesterol (LDL-C) following chronic consumption of modified milk and dairy products. Data from one study suggested that a significant reduction in LDL-C could be achieved in both the healthy and hypercholesterolaemic population. Thus, evidence from these studies suggests that consumption of milk and dairy products with modified fatty acid composition, compared with milk and dairy products of typical milk fat composition, may be beneficial to CVD risk in healthy and hypercholesterolaemic individuals. However, current evidence is insufficient and further work is needed to investigate the complex role of milk and cheese in CVD risk and explore the use of novel markers of CVD risk.
Resumo:
BACKGROUND: Carriers of the apolipoprotein E ɛ4 (APOE4) allele are lower responders to a docosahexaenoic acid (DHA) supplement than are noncarriers. This effect could be exacerbated in overweight individuals because DHA metabolism changes according to body mass index (BMI; in kg/m²). OBJECTIVES: We evaluated the plasma fatty acid (FA) response to a DHA-rich supplement in APOE4 carriers and noncarriers consuming a high-saturated fat diet (HSF diet) and, in addition, evaluated whether being overweight changed this response. DESIGN: This study was part of the SATgenɛ trial. Forty-one APOE4 carriers and 41 noncarriers were prospectively recruited and consumed an HSF diet for 8-wk followed by 8 wk of consumption of an HSF diet with the addition of DHA and eicosapentaenoic acid (EPA) (HSF + DHA diet; 3.45 g DHA/d and 0.5 g EPA/d). Fasting plasma samples were collected at the end of each intervention diet. Plasma total lipids (TLs) were separated into free FAs, neutral lipids (NLs), and phospholipids by using solid-phase extraction, and FA profiles in each lipid class were quantified by using gas chromatography. RESULTS: Because the plasma FA response to the HSF + DHA diet was correlated with BMI in APOE4 carriers but not in noncarriers, the following 2 groups were formed according to the BMI median: low BMI (<25.5) and high BMI (≥25.5). In response to the HSF + DHA diet, there were significant BMI × genotype interactions for changes in plasma concentrations of arachidonic acid and DHA in phospholipids and TLs and of EPA in NLs and TLs (P ≤ 0.05). APOE4 carriers were lower plasma responders to the DHA supplement than were noncarriers but only in the high-BMI group. CONCLUSIONS: Our findings indicate that apolipoprotein E genotype and BMI may be important variables that determine the plasma long-chain PUFA response to dietary fat manipulation. APOE4 carriers with BMI ≥25.5 may need higher intakes of DHA for cardiovascular or other health benefits than do noncarriers