6 resultados para PTPN11


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To describe the ophthalmological characteristics in a group of Noonan syndrome patients with proven mutations in the PTPN11 gene. Methods: Thirty-five Noonan syndrome patients with PTPN11 gene mutations underwent ophthalmological exams, which consisted of external inspection, slit-lamp biomicroscopy examination and an ophthalmoscopic examination after instillation of 1.0% tropicamide or 1.0% cyclopentolate. Results: All 35 patients had at least one abnormality upon ophthalmological examination. The eyelid and external eye abnormalities were the prevailing features, followed by prominent corneal nerves on slit-lamp exam. Fundus changes were detected in 8% of the subjects, mainly associated with high myopia. No statistically significant differences were observed among the patients presenting specific mutations in the PTPN11 gene. Conclusions: The current study further supports the finding that ocular symptoms account for a large fraction of the clinical manifestations of NS. Additional characteristics are described here. The roles for the various mutations of PTPN11 in ocular development are yet to be established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Noonan syndrome (NS) and Noonan-like syndromes (NLS) are autosomal dominant disorders caused by heterozygous mutations in genes of the RAS/MAPK pathway. The aim of the study was to construct specific growth charts for patients with NS and NLS. Anthropometric measurements (mean of 4.3 measurements per patient) were obtained in a mixed cross-sectional and longitudinal mode from 127 NS and 10 NLS patients with mutations identified in PTPN11 (n?=?90), SOS1 (n?=?14), RAF1 (n?=?10), KRAS (n?=?8), BRAF (n?=?11), and SHOC2 (n?=?4) genes. Height, weight, and body mass index (BMI) references were constructed using the lambda, mu, sigma (LMS) method. Patients had birth weight and length within normal ranges for gestational age although a higher preterm frequency (16%) was observed. Mean final heights were 157.4?cm [-2.4 standard deviation score (SDS)] and 148.4?cm (-2.2?SDS) for adult males and females, respectively. BMI SDS was lower when compared to Brazilian standards (BMI SDS of -0.9 and -0.5 SDS for males and females, respectively). Patients harboring mutations in RAF1 and SHOC2 gene were shorter than other genotypes, whereas patients with SOS1 and BRAF mutations had more preserved postnatal growth. In addition, patients with RAF1 and BRAF had the highest BMI whereas patients with SHOC2 and KRAS mutations had the lowest BMI. The present study established the first height, weight, and BMI reference curves for NS and NLS patients, based only on patients with a proven molecular cause. These charts can be useful for the clinical follow-up of patients with NS and NLS. (c) 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein tyrosine phosphatases have been the focus of considerable research efforts aimed at developing novel therapeutics; however, these targets are often characterized as being ‘undruggable’ due to the challenge of achieving selectivity, potency and cell permeability. More recently, there has been renewed interest in developing inhibitors of the tyrosine phosphatase SHP2 (PTPN11) in the light of its broad role in cancer, specifically juvenile myelomonocytic leukemia, and recent studies that implicate SHP2 as a key factor in breast cancer progression. Recent significant advances in the field of SHP2 inhibitor development raise the question: are we on the verge of a new era of protein tyrosine phosphatase-directed therapeutics? This article critically appraises recent developments, assesses ongoing challenges and presents a perspective on possible future directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Children with Down syndrome (DS) have a greatly increased risk of acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia (ALL). Both DS-AMKL and the related transient myeloproliferative disorder (TMD) have GATA1 mutations as obligatory, early events. To identify mutations contributing to leukemogenesis in DS-ALL, we undertook sequencing of candidate genes, including FLT3, RAS, PTPN11, BRAF, and JAK2. Sequencing of the JAK2 pseudokinase domain identified a specific, acquired mutation, JAK2R683, in 12 (28%) of 42 DS-ALL cases. Functional studies of the common JAK2R683G mutation in murine Ba/F3 cells showed growth factor independence and constitutive activation of the JAK/STAT signaling pathway. High-resolution SNP array analysis of 9 DS-ALL cases identified additional submicroscopic deletions in key genes, including ETV6, CDKN2A, and PAX5. These results infer a complex molecular pathogenesis for DS-ALL leukemogenesis, with trisomy 21 as an initiating or first hit and with chromosome aneuploidy, gene deletions, and activating JAK2 mutations as complementary genetic events. (Blood. 2009; 113: 646-648)