3 resultados para PTMSP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane-based separation processes are acquiring, in the last years, an increasing importance because of their intrinsic energetic and environmental sustainability: some types of polymeric materials, showing adequate perm-selectivity features, appear rather suitable for these applications, because of their relatively low cost and easy processability. In this work have been studied two different types of polymeric membranes, in view of possible applications to the gas separation processes, i.e. Mixed Matrix Membranes (MMMs) and high free volume glassy polymers. Since the early 90’s, it has been understood that the performances of polymeric materials in the field of gas separations show an upper bound in terms of permeability and selectivity: in particular, an increase of permeability is often accompanied by a decrease of selectivity and vice-versa, while several inorganic materials, like zeolites or silica derivates, can overcome this limitation. As a consequence, it has been developed the idea of dispersing inorganic particles in polymeric matrices, in order to obtain membranes with improved perm-selectivity features. In particular, dispersing fumed silica nanoparticles in high free volume glassy polymers improves in all the cases gases and vapours permeability, while the selectivity may either increase or decrease, depending upon material and gas mixture: that effect is due to the capacity of nanoparticles to disrupt the local chain packing, increasing the dimensions of excess free volume elements trapped in the polymer matrix. In this work different kinds of MMMs were fabricated using amorphous Teflon® AF or PTMSP and fumed silica: in all the cases, a considerable increase of solubility, diffusivity and permeability of gases and vapours (n-alkanes, CO2, methanol) was observed, while the selectivity shows a non-monotonous trend with filler fraction. Moreover, the classical models for composites are not able to capture the increase of transport properties due to the silica addition, so it has been necessary to develop and validate an appropriate thermodynamic model that allows to predict correctly the mass transport features of MMMs. In this work, another material, called poly-trimethylsilyl-norbornene (PTMSN) was examined: it is a new generation high free volume glassy polymer that, like PTMSP, shows unusual high permeability and selectivity levels to the more condensable vapours. These two polymer differ each other because PTMSN shows a more pronounced chemical stability, due to its structure double-bond free. For this polymer, a set of Lattice Fluid parameters was estimated, making possible a comparison between experimental and theoretical solubility isotherms for hydrocarbons and alcoholic vapours: the successfully modelling task, based on application of NELF model, offers a reliable alternative to direct sorption measurement, which is extremely time-consuming due to the relevant relaxation phenomena showed by each sorption step. For this material also dilation experiments were performed, in order to quantify its dimensional stability in presence of large size, swelling vapours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo studio sperimentale è stato quello di determinare l’effetto dell’aggiunta di piccole quantità (1wt%) di grafene e ossido di grafene al poli(1-trimetilsilil-1-propino) (PTMSP). Il PTMSP è uno dei polimeri più promettenti per la separazione di gas tramite membrane polimeriche grazie al suo elevato volume libero (26%). Sono state studiate sia membrane spesse (60-180 micron) preparate per solvent casting che sottili (2-10 micron) preparate per spin coating supportate su un film poroso di polipropilene commerciale. L’ossido di grafene aumenta la permeabilità del PTMSP, mentre il grafene ha mostrato un comportamento variabile in funzione del protocollo di preparazione che è risultato dipendere fortemente dalla velocità di evaporazione del solvente. Le membrane così ottenute sono state testate al permeometro. È stata osservata una dipendenza della permeabilità in funzione dello spessore del film e del grado di invecchiamento. In particolare, la presenza di nanofiller riduce il grado di invecchiamento dei film di PTMSP. Nel caso specifico della coppia di gas permeanti He/CO2, i campioni hanno mostrato un comportamento intercambiabile di selettività all’He o alla CO2, modulabile in funzione della temperatura tra 30-60°C e del filler utilizzato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo lavoro viene condotta un’analisi critica delle caratteristiche materiali e delle performance di una classe di polimeri recentemente sviluppata, i “Polimeri a Microporosità Intrinseca”, di grande interesse per lo sviluppo di membrane per la separazione di gas, specialmente nella Carbon Capture. Partendo dall’analisi del meccanismo di separazione di gas in membrane polimeriche dense si fornisce una overview sulle tecnologie assodate e innovative per la separazione di gas e per la CC. Le caratteristiche e le proprietà strutturali di rilievo dei polimeri vetrosi sono poi brevemente illustrate e le correlazioni empiriche note tra le suddette e le proprietà di trasporto di materia. Vengono quindi descritti i PIMs analizzando in primis la loro tipica struttura chimica, i processi di sintesi e le caratteristiche principali. Per il PIM-1, capostipite della categoria, il trasporto di gas viene approfondito con lo studio della variabilità delle proprietà quali la permeabilità, la diffusività e la solubilità di penetranti gassosi con i parametri operativi (p, T, composizione dei feed), considerando anche fenomeni tipici dei polimeri vetrosi quali l’aging e l’effetto dei solventi. Sono poi analizzate le proprietà di trasporto nei diversi PIMs, e confrontate con quelle di polimeri di comune utilizzo nelle separazioni in esame. La rielaborazione dei dati raccolti permette di confrontare le performance di una varietà di polimeri nella separazione di gas. In particolare l’analisi critica dei diagrammi permeabilità/selettività induce ad una valutazione approssimativa ma significativa delle possibili soluzioni tra cui optare per una data separazione di gas, considerando anche i parametri operativi tipici della stessa. Infine, vengono riportati e commentati dati di permeazione di miscele gassose in due diversi PIMs e nel polimero PTMSP, ponendo l’attenzione sulle reali condizioni operative con cui la tecnologia a membrane si deve confrontare in applicazioni reali.