994 resultados para PTEN Phosphohydrolase -- drug effects -- genetics -- physiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Nevirapine is widely used for the treatment of HIV-1 infection; however, its chronic use has been associated with severe liver and skin toxicity. Women are at increased risk for these toxic events, but the reasons for the sex-related differences are unclear. Disparities in the biotransformation of nevirapine and the generation of toxic metabolites between men and women might be the underlying cause. The present work aimed to explore sex differences in nevirapine biotransformation as a potential factor in nevirapine-induced toxicity. METHODS: All included subjects were adults who had been receiving 400 mg of nevirapine once daily for at least 1 month. Blood samples were collected and the levels of nevirapine and its phase I metabolites were quantified by HPLC. Anthropometric and clinical data, and nevirapine metabolite profiles, were assessed for sex-related differences. RESULTS: A total of 52 patients were included (63% were men). Body weight was lower in women (P = 0.028) and female sex was associated with higher alkaline phosphatase (P = 0.036) and lactate dehydrogenase (P = 0.037) levels. The plasma concentrations of nevirapine (P = 0.030) and the metabolite 3-hydroxy-nevirapine (P = 0.035), as well as the proportions of the metabolites 12-hydroxy-nevirapine (P = 0.037) and 3-hydroxy-nevirapine (P = 0.001), were higher in women, when adjusted for body weight. CONCLUSIONS: There was a sex-dependent variation in nevirapine biotransformation, particularly in the generation of the 12-hydroxy-nevirapine and 3-hydroxy-nevirapine metabolites. These data are consistent with the sex-dependent formation of toxic reactive metabolites, which may contribute to the sex-dependent dimorphic profile of nevirapine toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation of stimulated hypocotyls of dark-grown Arabidopsis (Arabidopsis thaliana) seedlings. We show that the modulation occurs through induction of the expression of the negative regulator of auxin signaling INDOLE-3-ACETIC ACID INDUCIBLE19/MASSUGU2. The biological significance of this regulatory mechanism involving GAs and auxin seems to be the maintenance of a high degree of flexibility in tropic responses. This notion is further supported by observations that GA-deficient seedlings showed a much lower variance in the response to gravity compared to wild-type seedlings and that the attenuation of gravitropism by GAs resulted in an increased phototropic response. This suggests that the interplay between auxin and GAs may be particularly important for plant orientation under competing tropic stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of the transcription factor NF-kappaB often results in protection against apoptosis. In particular, pro-apoptotic tumor necrosis factor (TNF) signals are blocked by proteins that are induced by NF-kappaB such as TNFR-associated factor 1 (TRAF1). Here we show that TRAF1 is cleaved after Asp-163 when cells are induced to undergo apoptosis by Fas ligand (FasL). The C-terminal cleavage product blocks the induction of NF-kappaB by TNF and therefore functions as a dominant negative (DN) form of TRAF1. Our results suggest that the generation of DN-TRAF1 is part of a pro-apoptotic amplification system to assure rapid cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1β secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1β in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1β was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1β and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1β by antigen-presenting cells in an NLRP3- and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1β in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1β through at least two separate mechanisms: by targeting pro-IL-1β for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Alpha(1)-adrenoceptor antagonists are extensively used in the treatment of hypertension and lower urinary tract symptoms associated with benign prostatic hyperplasia. Among the side effects, ejaculatory dysfunction occurs more frequently with drugs that are relatively selective for alpha(1A)-adrenoceptors compared with other drugs of this class. This suggests that alpha(1A)-adrenoceptors may contribute to ejaculation. However, this has not been studied at the molecular level. EXPERIMENTAL APPROACH: The physiological contribution of each alpha(1)-adrenoceptor subtype was characterized using alpha(1)-adrenoceptor subtype-selective knockout (KO) mice (alpha(1A)-, alpha(1B)- and alpha(1D)-AR KO mice) since the subtype-specific drugs available are only moderately selective. We analysed the role of alpha(1)-adrenoceptors in the blood pressure and vascular response as well as ejaculation by determining these variables in alpha(1)-adrenoceptor subtype-selective KO mice and in mice with all their alpha(1)-adrenoceptor subtypes deleted (alpha(1)-AR triple-KO mice). KEY RESULTS: The pregnancy rate was reduced by 50% in alpha(1A)-adrenoceptor KO mice, and this reduction was dramatically enhanced in alpha(1)-adrenoceptor triple-KO mice. Contractile tension of the vas deferens in response to noradrenaline was markedly decreased in alpha(1A)-adrenoceptor KO mice, and this contraction was completely abolished in alpha(1)-adrenoceptor triple-KO mice. This attenuation of contractility was also observed in the electrically stimulated vas deferens. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that alpha(1)-adrenoceptors, particularly alpha(1A)-adrenoceptors, are required for normal contractility of the vas deferens and consequent sperm ejaculation as well as having a function in fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has shown that aggregating fetal brain cell cultures are able to attain a highly differentiated state, and that their development is greatly enhanced by growth and/or differentiation factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and the protein kinase C-activating tumor promoter mezerein. The present study shows that in these 3-dimensional cultures the peptide growth factors EGF and bFGF as well as mezerein are able to induce the expression of the proto-oncogene c-fos. This induction was rapid and transient, in good agreement with observations reported from a wide variety of cell types in vitro. The maximal levels of c-fos mRNA found after stimulation were low in immature cultures and increased greatly as maturation progressed. Of the three factors tested, mezerein was the most potent inducer of c-fos. In contrast to the peptide growth factors EGF and bFGF which were found to induce c-fos only in glial cells, mezerein was stimulatory in glial cells as well as in neurons. A similar cell type specificity has been observed previously for the maturation-enhancing response in immature aggregate cultures. However, in the present study no correlation was found between the degree of c-fos induction and the extent of the maturation-enhancing stimulation. Immature cultures known to be most sensitive and responsive to these maturation-enhancing agents required relatively high doses of peptide growth factors for the induction of c-fos, and the maximal levels of c-fos mRNA elicited were much lower than those in differentiated cultures which did not show any long-term response to these stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Segmental handling of sodium along the proximal and distal nephron might be heritable and different between black and white participants. METHODS: We randomly recruited 95 nuclear families of black South African ancestry and 103 nuclear families of white Belgian ancestry. We measured the (FENa) and estimated the fractional renal sodium reabsorption in the proximal (RNaprox) and distal (RNadist) tubules from the clearances of endogenous lithium and creatinine. In multivariable analyses, we studied the relation of RNaprox and RNadist with FENa and estimated the heritability (h) of RNaprox and RNadist. RESULTS: Independent of urinary sodium excretion, South Africans (n = 240) had higher RNaprox (unadjusted median, 93.9% vs. 81.0%; P < 0.001) than Belgians (n = 737), but lower RNadist (91.2% vs. 95.1%; P < 0.001). The slope of RNaprox on FENa was steeper in Belgians than in South Africans (-5.40 +/- 0.58 vs. -0.78 +/- 0.58 units; P < 0.001), whereas the opposite was true for the slope of RNadist on FENa (-3.84 +/- 0.19 vs. -13.71 +/- 1.30 units; P < 0.001). h of RNaprox and RNadist was high and significant (P < 0.001) in both countries. h was higher in South Africans than in Belgians for RNaprox (0.82 vs. 0.56; P < 0.001), but was similar for RNadist (0.68 vs. 0.50; P = 0.17). Of the filtered sodium load, black participants reabsorb more than white participants in the proximal nephron and less postproximally. CONCLUSION: Segmental sodium reabsorption along the nephron is highly heritable, but the capacity for regulation in the proximal and postproximal tubules differs between whites and blacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to establish and compare the durations of the seminiferous epithelium cycles of the common shrew Sorex araneus, which is characterized by a high metabolic rate and multiple paternity, and the greater white-toothed shrew Crocidura russula, which is characterized by a low metabolic rate and a monogamous mating system. Twelve S. araneus males and fifteen C. russula males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determinations, we applied the classical method of estimation and linear regression as a new method. With regard to variance, and even with a relatively small sample size, the new method seems to be more precise. In addition, the regression method allows the inference of information for every animal tested, enabling comparisons of different factors with cycle lengths. Our results show that not only increased testis size leads to increased sperm production, but it also reduces the duration of spermatogenesis. The calculated cycle lengths were 8.35 days for S. araneus and 12.12 days for C. russula. The data obtained in the present study provide the basis for future investigations into the effects of metabolic rate and mating systems on the speed of spermatogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial Na(+) channel ENaC is a key player in the maintenance of whole body Na(+) balance, and consequently of blood pressure. It is tightly regulated by numerous signaling pathways including ubiquitylation via the ubiquitin-protein ligase Nedd4-2. This mechanism is itself under the control of several kinases, which phosphorylate Nedd4-2, thereby interfering with ENaC/Nedd4-2 interaction, or by Usp2-45, which binds to and deubiquitylates ENaC. Another, different regulatory mechanism concerns the proteolytic activation of ENaC, during which the channel is cleaved on its luminal side by intracellular convertases such as furin, and further activated by extracellular proteases such as CAP-1. This process is regulated as well but the underlying mechanisms are not understood. Previously, evidence was provided that the ubiquitylation status of ENaC may affect the cleavage of the channel. When ubiquitylation of ENaC was reduced, either by co-expressing Usp2-45, or mutating either the ENaC PY-motifs (i.e. the binding sites for Nedd4-2) or intracellular lysines (i.e. ubiquitylation sites), the level of channel cleavage was increased. Here we demonstrate that lysine-mutated ENaC channels are not ubiquitylated at the cell surface, are preferentially cleaved, and Usp2-45 does not affect their cleavage efficiency. We further show by limited proteolysis that the intracellular ubiquitylation status of ENaC affects the extracellular conformation of αENaC, by demonstrating that non-ubiquitylated channels are more efficiently cleaved when treated with extracellularly added trypsin or chymotrypsin. These results present a new paradigm in which an intracellular, post-translational modification (e.g. ubiquitylation) of a transmembrane protein can affect its extracellular conformation.