957 resultados para PROTEIN-FOLDING KINETICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anomalous temperature dependence of protein folding has received considerable attention. Here we show that the temperature dependence of the folding of protein L becomes extremely simple when the effects of temperature on protein stability are corrected for; the logarithm of the folding rate is a linear function of 1/T on constant stability contours in the temperature–denaturant plane. This convincingly demonstrates that the anomalous temperature dependence of folding derives from the temperature dependence of the interactions that stabilize proteins, rather than from the super Arrhenius temperature dependence predicted for the configurational diffusion constant on a rough energy landscape. However, because of the limited temperature range accessible to experiment, the results do not rule out models with higher order temperature dependences. The significance of the slope of the stability-corrected Arrhenius plots is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple model of the kinetics of protein folding is presented. The reaction coordinate is the "correctness" of a configuration compared with the native state. The model has a gap in the energy spectrum, a large configurational entropy, a free energy barrier between folded and partially folded states, and a good thermodynamic folding transition. Folding kinetics is described by a master equation. The folding time is estimated by means of a local thermodynamic equilibrium assumption and then is calculated both numerically and analytically by solving the master equation. The folding time has a maximum near the folding transition temperature and can have a minimum at a lower temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex protein folding kinetics in wide temperature ranges is studied through diffusive dynamics on the underlying energy landscape. The well-known kinetic chevron rollover behavior is recovered from the mean first passage time, with the U-shape dependence on temperature. The fastest folding temperature T-0 is found to be smaller than the folding transition temperature T-f. We found that the fluctuations of the kinetics through the distribution of first passage time show rather universal behavior, from high-temperature exponential Poissonian kinetics to the relatively low-temperature highly nonexponential kinetics. The transition temperature is at T-k and T-0, T-k, T-f. In certain low-temperature regimes, a power law behavior at long time emerges. At very low temperatures ( lower than trapping transition temperature T< T-0/(4&SIM;6)), the kinetics is an exponential Poissonian process again.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier. The ratio between first-passage-time moments is proposed to be a good variable to quantitatively probe these kinetic changes. The temperature-dependent kinetics is consistent with the strange kinetics found in folding dynamics experiments. The potential applications of the current results to single-molecule protein folding are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use an off-lattice minimalist model to describe the effects of pressure in slowing down the folding/unfolding kinetics of proteins when subjected to increasingly larger pressures. The potential energy function used to describe the interactions between beads in the model includes the effects of pressure on the pairwise interaction of hydrophobic groups in water. We show that pressure affects the participation of contacts in the transition state. More significantly, pressure exponentially decreases the chain reconfigurational diffusion coefficient. These results are consistent with experimental results on the kinetics of pressure-denaturation of staphylococcal nuclease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly nonexponential folding kinetics in aqueous solution have been observed during temperature jump-induced refolding of two proteins, yeast phosphoglycerate kinase and a ubiquitin mutant. The observations are most easily interpreted in terms of downhill folding, which posits a heterogeneous ensemble of structures en route to the folded state. The data are also reconciled with exponential kinetics measured under different experimental conditions and with titration experiments indicating cooperative folding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the rates of chemical reactions become faster with increasing temperature, the converse may be observed with protein-folding reactions. The rate constant for folding initially increases with temperature, goes through a maximum, and then decreases. The activation enthalpy is thus highly temperature dependent because of a large change in specific heat (delta Cp). Such a delta Cp term is usually presumed to be a consequence of a large decrease in exposure of hydrophobic surfaces to water as the reaction proceeds from the denatured state to the transition state for folding: the hydrophobic side chains are surrounded by "icebergs" of water that melt with increasing temperature, thus making a large contribution to the Cp of the denatured state and a smaller one to the more compact transition state. The rate could also be affected by temperature-induced changes in the conformational population of the ground state: the heat required for the progressive melting of residual structure in the denatured state will contribute to delta Cp. By examining two proteins with different refolding mechanisms, we are able to find both of these two processes; barley chymotrypsin inhibitor 2, which refolds from a highly unfolded state, fits well to a hydrophobic interaction model with a constant delta Cp of activation, whereas barnase, which refolds from a more structured denatured state, deviates from this ideal behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the kinetics of protein folding via statistical energy landscape theory. We concentrate on the local-connectivity case, where the configurational changes can only occur among neighboring states, with the folding progress described in terms of an order parameter given by the fraction of native conformations. The non-Markovian diffusion dynamics is analyzed in detail and an expression for the mean first-passage time (MFPT) from non-native unfolded states to native folded state is obtained. It was found that the MFPT has a V-shaped dependence on the temperature. We also find that the MFPT is shortened as one increases the gap between the energy of the native and average non-native folded states relative to the fluctuations of the energy landscape. The second- and higher-order moments are studied to infer the first-passage time distribution. At high temperature, the distribution becomes close to a Poisson distribution, while at low temperatures the distribution becomes a Levy-type distribution with power-law tails, indicating a nonself-averaging intermittent behavior of folding dynamics. We note the likely relevance of this result to single-molecule dynamics experiments, where a power law (Levy) distribution of the relaxation time of the underlined protein energy landscape is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.