928 resultados para PROLONGS SURVIVAL
Resumo:
The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.
Resumo:
Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.
Resumo:
BACKGROUND/AIMS: Mammalian target of rapamycin (mTOR) signalling is central in the activation of hepatic stellate cells (HSCs), the key source of extracellular matrix (ECM) in fibrotic liver. We tested the therapeutic potential of the mTOR inhibitor rapamycin in advanced cirrhosis. METHODS: Cirrhosis was induced by bile duct-ligation (BDL) or thioacetamide injections (TAA). Rats received oral rapamycin (0.5 mg/kg/day) for either 14 or 28 days. Untreated BDL and TAA-rats served as controls. Liver function was quantified by aminopyrine breath test. ECM and ECM-producing cells were quantified by morphometry. MMP-2 activity was measured by zymography. mRNA expression of procollagen-alpha1, transforming growth factor-beta1 (TGF-beta1) and beta2 was quantified by RT-PCR. RESULTS: Fourteen days of rapamycin improved liver function. Accumulation of ECM was decreased together with numbers of activated HSCs and MMP-2 activity in both animal models. TGF-beta1 mRNA was downregulated in TAA, TGF-beta2 mRNA was downregulated in BDL. 28 days of rapamycin treatment entailed a survival advantage of long-term treated BDL-rats. CONCLUSIONS: Low-dose rapamycin treatment is effectively antifibrotic and attenuates disease progression in advanced fibrosis. Our results warrant the clinical evaluation of rapamycin as an antifibrotic drug.
Resumo:
Chronic human heart failure is characterized by abnormalities in β-adrenergic receptor (βAR) signaling, including increased levels of βAR kinase 1 (βARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of βARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of βARK1 (βARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca2+-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 ± 1 weeks). In contrast, CSQ/βARKct mice exhibited a significant increase in mean survival age (15 ± 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/βARKct, left ventricular end diastolic dimension 5.60 ± 0.17 mm vs. 4.19 ± 0.09 mm, P < 0.005; % fractional shortening, 15 ± 2 vs. 36 ± 2, P < 0.005). The enhancement of the survival rate in CSQ/βARKct mice was substantially potentiated by chronic treatment with the βAR antagonist metoprolol (CSQ/βARKct nontreated vs. CSQ/βARKct metoprolol treated, 15 ± 1 weeks vs. 25 ± 2 weeks, P < 0.0001). Thus, overexpression of the βARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with β-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of βARK1 inhibition.
Resumo:
The resistance of acquired immunodeficiency syndrome (AIDS) to traditional drug therapy has prompted a search for alternative treatments for this disease. One potential approach is to provide genetic resistance to viral replication to prolong latency. This strategy requires the definition of effective antiviral genes that extend the survival of T cells in human immunodeficiency virus (HIV)-infected individuals. We report the results of a human study designed to determine whether a genetic intervention can prolong the survival of T cells in HIV-infected individuals. Gene transfer was performed in enriched CD4+ cells with plasmid expression vectors encoding an inhibitory Rev protein, Rev M10, or a deletion mutant control, deltaRev M10, delivered by gold microparticles. Autologous cells separately transfected with each of the vectors were returned to each patient, and toxicity, gene expression, and survival of genetically modified cells were assessed. Cells that expressed Rev M10 were more resistant to HIV infection than those with deltaRev M10 in vitro. In HIV-infected subjects, Rev M10-transduced cells showed preferential survival compared to deltaRev M10 controls. Rev M10 can therefore act as a specific intracellular inhibitor that can prolong T-cell survival in HIV-1-infected individuals and potentially serve as a molecular genetic intervention which can contribute to the treatment of AIDS.
Resumo:
Prostate cancer (CaP) is the most diagnosed non-cutaneous malignancy and the second leading cause of cancer mortality among United States males. Major racial disparities in incidence, survival, as well as treatment persist. The mortality is three times higher among African Americans (AAs) compared with Caucasians. Androgen carcinogenesis has been persistently implicated but results are inconsistent; and hormone manipulation has been the main stay of treatment for metastatic disease, supportive of the androgen carcinogenesis. The survival disadvantage of AAs has been attributed to the differences in socioeconomic factors (SES), tumor stage, and treatment. We hypostasized that HT prolongs survival in CaP and that the racial disparities in survival is influenced by variation in HT and primary therapies as well as SES. To address these overall hypothesis, we first utilized a random-effect meta-analytic design to examine evidence from randomized trials on the efficacy of androgen deprivation therapy in localized and metastatic disease, and assessed, using Cox proportional hazards models, the effectiveness of HT in prolonging survival in a large community-based cohort of older males diagnosed with local/regional CaP. Further we examined the role of HT and primary therapies on the racial disparities in CaP survival. The results indicated that adjuvant HT compared with standard care alone is efficacious in improving overall survival, whereas HT has no significant benefit in the real world experience in increasing the overall survival of older males in the community treated for local/regional disease. Further, racial differences in survival persist and were explained to some extent by the differences in the primary therapies (radical prostatectomy, radiation and watchful waiting) and largely by SES. Therefore, given the increased used of hormonal therapy and the cost-effectiveness today, more RCTs are needed to assess whether or not survival prolongation translates to improved quality of life, and to answer the research question on whether or not the decreased use of radical prostatectomy by AAs is driven by the Clinicians bias or AAs's preference of conservative therapy and to encourage AAs to seek curative therapies, thus narrowing to some degree the persistent mortality disparities between AAs and Caucasians. ^
Resumo:
Treatment of malignant glioma requires a multidisciplinary team. Treatment includes surgery, radiotherapy, and chemotherapy. Recently developed agents have demonstrated activity against recurrent malignant glioma and efficacy if given concurrently with radiotherapy in the upfront setting. Oligodendroglioma with 1p/19q deletions has been recognized as a distinct pathologic entity with particular sensitivity to radiotherapy and chemotherapy. Randomized trials have shown that early neoadjuvant or adjuvant administration of procarbazine, lomustine, and vincristine chemotherapy prolongs disease-free survival; however, it has no impact on overall survival. Temozolomide, a novel alkylating agent, has shown modest activity against recurrent glioma. In combination with radiotherapy in newly diagnosed patients with glioblastoma, temozolomide significantly prolongs survival. Molecular studies have demonstrated that the benefit is mainly observed in patients whose tumors have a methylated methylguanine methyltransferase gene promoter and are thus unable to repair some of the chemotherapy-induced DNA damage. For lower-grade glioma, the use of chemotherapy remains limited to recurrent disease, and first-line administration is the subject of ongoing clinical trials. Irinotecan and agents like gefitinib, erlotinib, and imatinib targeting the epidermal growth factor receptor and platelet-derived growth factor receptor have shown some promise in recurrent malignant glioma. This review summarizes recent developments, focusing on the clinical management of patients in daily neuro-oncology practice.
Resumo:
We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.
Resumo:
Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles (""ghosts"") can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic dimorphic fungi including Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides posadasii. Melanization appears to contribute to virulence by reducing the susceptibility of melanized fungi to host defense mechanisms and antifungal drugs.
Resumo:
Adoptive T cell therapy using antigen-specific T lymphocytes is a powerful immunotherapeutic approach against cancer. Nevertheless, many T cells against tumor-antigens exhibit only weak anti-tumoral response. To overcome this barrier it is necessary to improve the potency and anti-tumoral efficacy of these T cells. Activation and activity of T cells are tightly controlled to inhibit unwanted T cell responses and to reduce the risk of autoimmunity. Both are regulated by extrinsic signals and intrinsic mechanisms which suppress T cell activation. The intrinsic mechanisms include the expression of phosphatases that counteract the activation-inducing kinases. Modifying the expression of these phosphatases allows the targeted modulation of T cell reactivity. MicroRNAs (miRNAs) are regulatory small noncoding RNA molecules that control gene expression by targeting messenger RNAs in a sequence specific manner. Gene-specific silencing plays a key role in diverse biological processes, such as development, differentiation, and functionality. miR181a has been shown to be highly expressed in immature T cells that recognize low-affinity antigens.rnThe present study successfully shows that ectopic expression of miR181a is able to enhance the sensitivity of both murine and human T cells. In CD4+ T helper cells as well as in CD8+ cytotoxic T cells the overexpression of miR181a leads to downregulation of multiple phosphatases involved in the T cell receptor signaling pathway. Overexpression of miR181a in human T cells achieves a co-stimulatory independent activation and has an anti-apoptotic effect on CD4+ T helper cells. Additionally, increasing the amount of miR181a enhances the cytolytic activity of murine CD8+ TCRtg T cells in an antigen-specific manner.rnTo test miR181a overexpressing T cells in vivo, a mouse tumor model using a B cell lymphoma cell line (A20-HA) expressing the Influenza hemagglutinin (Infl.-HA) antigen was established. The expression of model antigens in tumor cell lines enables targeted elimination of tumors using TCRtg T cells. The transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ T cells alone has no positive effect neither on tumor control nor on survival of A20-HA tumor-bearing mice. In contrast, the co-transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ and CD4+ T cells leads to improved tumor control and prolongs survival of A20-HA tumor-bearing mice. This effect is characterized by higher amounts of effector T cells and the expansion of Infl.-HA TCRtg CD8+ T cells.rnAll effects were achieved by changes in expression of several genes including molecules involved in T cell differentiation, activation, and regulation, cytotoxic effector molecules, and receptors important for the homing process of T cells in miR181a overexpressing T cells. The present study demonstrates that miR181a is able to enhance the anti-tumoral response of antigen-specific T cells and is a promising candidate for improving adoptive cell therapy.
Resumo:
Sorafenib targets the Raf/mitogen-activated protein kinase, VEGF, and platelet-derived growth factor pathways and prolongs survival patients in advanced hepatocellular carcinoma (HCC). Everolimus inhibits the mammalian target of rapamycin, a kinase overactive in HCC. To investigate whether the antitumor effects of these agents are additive, we compared a combined and sequential treatment regimen of everolimus and sorafenib with monotherapy. After hepatic implantation of Morris Hepatoma (MH) cells, rats were randomly allocated to everolimus (5 mg/kg, 2×/week), sorafenib (7.5 mg/kg/d), combined everolimus and sorafenib, sequential sorafenib (2 weeks) then everolimus (3 weeks), or control groups. MRI quantified tumor volumes. Erk1/2, 4E-BP1, and their phosphorylated forms were quantified by immunoblotting. Angiogenesis was assessed in vitro by aortic ring and tube formation assays, and in vivo with Vegf-a mRNA and vascular casts. After 35 days, tumor volumes were reduced by 60%, 85%, and 55%, relative to controls, in everolimus, the combination, and sequential groups, respectively (P < 0.01). Survival was longest in the combination group (P < 0.001). Phosphorylation of 4E-BP1 and Erk1/2 decreased after everolimus and sorafenib, respectively. Angiogenesis decreased after all treatments (P < 0.05), although sorafenib increased Vegf-a mRNA in liver tumors. Vessel sprouting was abundant in control tumors, lower after sorafenib, and absent after the combination. Intussusceptive angiogenic transluminal pillars failed to coalesce after the combination. Combined treatment with everolimus and sorafenib exerts a stronger antitumoral effect on MH tumors than monotherapy. Everolimus retains antitumoral properties when administered sequentially after sorafenib. This supports the clinical use of everolimus in HCC, both in combination with sorafenib or after sorafenib.
Resumo:
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death. Sorafenib prolongs survival of patients with advanced disease and is approved for the systemic treatment of unresectable HCC. It possesses antiangiogenic and antiproliferative properties by way of inhibition of the receptor tyrosine kinases vascular endothelial growth factor receptor 2 (VEGFR-2) and platelet-derived growth factor receptor-beta 1/2 (PDGFR-β) and the kinase RAF. Sorafenib represents a candidate compound for adjuvant therapy in HCC patients. The aim of our study was to investigate whether sorafenib affects liver regeneration. C57BL6 mice received sorafenib orally at 30 mg/kg/day or its vehicle either for 14 days until the day before hepatectomy or starting the day after surgery or both. Animals were sacrificed 24, 72, and 120 hours after hepatectomy. Liver regeneration was calculated as a percent of initial liver weight. Bromodeoxyuridine (BrdU) incorporation and phospho-extracellular signal-regulated kinase (pERK1/2) were determined by immunohistochemistry on liver sections. VEGF-A, PDGF-BB, and hepatocyte growth factor (HGF) levels were measured in liver tissue homogenates. Histological analysis of scar tissue was performed. Treatment stopped 1 day before surgery had no impact on liver regeneration. Continuous sorafenib treatment and treatment started 1 day after surgery had statistically significant effects on liver regeneration at 120 hours compared to vehicle-treated control animals (72% ± 12 versus control 88% ± 15 and 70% ± 13 versus control 86% ± 5 at 120 hours, both P ≤ 0.02). BrdU incorporation showed decreased numbers of positive nuclei in both groups receiving sorafenib after surgery. Phospho-ERK levels were reduced in sorafenib-treated animals. An increase of VEGF-A levels was observed in mice receiving sorafenib. Wound-healing complications were observed in animals receiving sorafenib after surgery and confirmed on histological sections. CONCLUSION: This preclinical study shows that sorafenib did not impact on liver regeneration when ceased before surgery; however, administration after hepatectomy affected late liver regeneration.
Resumo:
Chemotherapy modestly prolongs survival of patients with advanced gastric cancer, but strategies are needed to increase its efficacy. Histone deacetylase (HDAC) inhibitors modify chromatin and can block cancer cell proliferation and promote apoptosis.