821 resultados para PROLINE TRANSPORT
Resumo:
Leishmania spp. are the causative agents of leishmaniasis, a complex of diseases with a broad spectrum of clinical manifestations. Leishmania (Leishmania) amazonensis is a main etiological agent of diffuse cutaneous leishmaniasis. Leishmania spp., as other trypanosomatids, possess a metabolism based significantly on the consumption of amino acids. However, the transport of amino acids in these organisms remains poorly understood with few exceptions. Glutamate transport is an important biological process in many organisms. In the present work, the transport of glutamate is characterized. This process is performed by a single kinetic system (K-m=0.59 +/- 0.04 mM, V-max=0.123 +/- 0.003 nmol/min per 20 x 10(6) cells) showing an energy of activation of 52.38 +/- 4.7 kJ/mol and was shown to be partially inhibited by analogues, such as glutamine, aspartate, alpha-ketoglutarate and oxaloacetate, methionine, and alanine. The transport activity was sensitive to the extracellular concentration of H+ but not to Na+ or K+. However, unlike other amino acid transporters presently characterized, the treatment with specific ionophores confirmed the participation of a K+, and not H+ membrane gradient in the transport process.
Resumo:
Crithidia deanei, a monoxenic trypanosomatid, presents an endosymbiotic bacterium in its cytoplasm. Both the protozoan and the bacterium maintain intensive metabolic exchange, resulting in an interesting model to study the coevolution of metabolisms. The relevance of L-proline for the growth of C. deanei and its transport into these cells was studied. Both the endosymbiont-containing (wild) and the endosymbiont-free protozoa (aposymbiont or cured) strains, when grown in medium supplemented with L-proline, reached higher cell densities than those grown in unsupplemented media. We biochemically characterized the uptake of L-proline in both the wild (K(m)=0.153 +/- 0.022 mM, V(max)=0.239 +/- 0.011 nmol min(-1) per 4 x 10(7) cells) and the aposymbiont strains (K(m)=0.177 +/- 0.049 mM, V(max)=0.132 +/- 0.012 nmol min(-1) per 4 x 10(7) cells). These data suggest a single type of proline transporter whose activity is upregulated by the presence of the symbiotic bacterium. Proline transport was further characterized and was found to be insensitive to the extracellular concentration of Na(+), but sensitive to K(+) and pH. The abolition of proline uptake by respiratory chain inhibitors and valinomycin indicates that the proline transport in C. deanei is dependent on the plasma membrane K(+) gradient.
Resumo:
In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.
Resumo:
In addition to its role as a protein component in Leishmania, serine is also a precursor for the synthesis of both phosphatidylserine, which is a membrane molecule involved in parasite invasion and inactivation of macrophages, and sphingolipids, which are necessary for Leishmania to differentiate into its infective forms. We have characterized serine uptake in both promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. In promastigotes, kinetic data show a single, saturable transport system, with a Km of 0.253 +/- 0.01 mM and a maximum velocity of 0.246 +/- 0.04 nmol/min per 107 cells. Serine transport increased linearly with temperature in the range from 20 degrees C to 45 degrees C, allowing the calculation of an activation energy of 7.09 kJ/mol. Alanine, cysteine, glycine, threonine, valine and ethanolamine competed with the substrate at a ten-fold excess concentration. Serine uptake was dependent on pH, with an optimum activity at pH 7.5. The characterization of the serine transport process in amastigotes revealed a transport system with a similar Km, energy of activation and pH response to that found in promastigotes, suggesting that the same transport system is active in both insect vector and mammalian host Leishmania stages. This could constitute an evolutionary mechanism that guarantees the provision of such an essential molecule during host change events, such as differentiation into amastigotes and macrophage invasion, as well as to ensure that the parasite maintains the infection in the mammalian host. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The process of host cell invasion by Trypanosoma cruzi depends on parasite energy. What source of energy is used for that event is not known. To address this and other questions related to T. cruzi energy requirements and cell invasion, we analyzed metacyclic trypomastigote forms of the phylogenetically distant CL and G strains. For both strains, the nutritional stress experienced by cells starved for 24, 36, or 48 h in phosphate-buffered saline reduced the ATP content and the ability of the parasite to invade HeLa cells proportionally to the starvation time. Inhibition of ATP production by treating parasites with rotenone plus antimycin A also diminished the infectivity. Nutrient depletion did not alter the expression of gp82, the surface molecule that mediates CL strain internalization, but increased the expression of gp90, the negative regulator of cell invasion, in the G strain. When L-proline was given to metacyclic forms starved for 36 h, the ATP levels were restored to those of nonstarved controls for both strains. Glucose had no such effect, although this carbohydrate and L-proline were transported in similar fashions. Recovery of infectivity promoted by L-proline treatment of starved parasites was restricted to the CL strain. The profile of restoration of ATP content and gp82-mediated invasion capacity by L-proline treatment of starved Y-strain parasites was similar to that of the CL strain, whereas the Dm28 and Dm30 strains, whose infectivity is downregulated by gp90, behaved like the G strain. L-Proline was also found to increase the ability of the CL strain to traverse a gastric mucin layer, a property important for the establishment of T. cruzi infection by the oral route. Efficient translocation of parasites through gastric mucin toward the target epithelial cells in the stomach mucosa is an essential requirement for subsequent cell invasion. By relying on these closely associated ATP-driven processes, the metacyclic trypomastigotes effectively accomplish their internalization.
Resumo:
Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Resumo:
The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed.
Resumo:
Proline is established as a potent breaker of both alpha-helical and beta-sheet structures in soluble (globular) proteins. Thus, the frequent occurrence of the Pro residue in the putative transmembrane helices of integral membrane proteins, particularly transport proteins, presents a structural dilemma. We propose that this phenomenon results from the fact that the structural propensity of a given amino acid may be altered to conform to changes imposed by molecular environment. To test this hypothesis on proline, we synthesized model peptides of generic sequence H2N-(Ser-LyS)2-Ala- Leu-Z-Ala-Leu-Z-Trp-Ala-Leu-Z-(Lys-Ser)3-OH (Z = Ala and/or Pro). Peptide conformations were analyzed by circular dichroism spectroscopy in aqueous buffer, SDS, lysophosphatidylglycerol micelles, and organic solvents (methanol, trifluoroethanol, and 2-propanol). The helical propensity of Pro was found to be greatly enhanced in the membrane-mimetic environments of both lipid micelles and organic solvents. Proline was found to stabilize the alpha-helical conformation relative to Ala at elevated temperatures in 2-propanol, an observation that argues against the doctrine that Pro is the most potent alpha-helix breaker as established in aqueous media. Parallel studies in deoxycholate micelles of the temperature-induced conformational transitions of the single-spanning membrane bacteriophage IKe major coat protein, in which the Pro-containing wild type was compared with Pro30 --> Ala mutant, Pro was found to protect the helix, but disrupt the beta-sheet structure as effectively as it does to model peptides in water. The intrinsic capacity of Pro to disrupt beta-sheets was further reflected in a survey of porins where Pro was found to be selectively excluded from the core of membrane-spanning beta-sheet barrels. The overall data provide a rationale for predicting and understanding the structural consequences when Pro occurs in the context of a membrane.
Resumo:
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9±1.7 and 1.7±0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.
Resumo:
An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.
Amino acid, peptide and drug transport across monolayers of human intestinal (CAC0-2) cells in vitro
Resumo:
The properties of Caco-2 monolayers were compared on aluminium oxide and nitrocellulose permeable-supports. On nitrocellulose, Caco-2 cells displayed a higher rate of taurocholic acid transport than those cultured on aluminium oxide inserts. In addition, Caco-2 cells grown on these two inserts were not comparable with respect to cell morphology, cell numbers and transepithelial electrical resistance. The low adsorption potential of the aluminium oxide inserts, particularly for high molecular weight or lipophilic ligands, offers a distinct advantage over nitrocellulose inserts for drug transport studies. The carrier-mediated uptake and transport of the imino acid (L-proline) and the acidic amino acids (L-aspartate and L-glutamate) have been studied. At pH7.4, L-proline uptake is mediated via an A-system carrier. Elevated uptake and transport under acidic conditions occurs by activation of a distinct carrier population. Acidic amino acid transport is mediated via a X-AG system. The flux of baclofen, CGP40116 andCGP40117 across Caco-2 monolayers was described by passive transport. The transport of three peptides, thyrotrophin-releasing hormone, SQ29852 and cyclosporin were investigated. Thyrotrophin-releasing hormone transport acrossCaco-2 monolayers was characterised by a minor saturable (carrier-mediated,approximately 25%) pathway, superimposed onto a major non-saturable (diffusional)pathway. SQ29852 uptake into Caco-2 monolayers is described by a major saturable mechanism (Km = 0.91 mM) superimposed onto a minor passive component.However, the initial-rate of SQ29852 transport is consistent with a passive transepithelial transport mechanism. These data highlight the possibility that itsbasolateral efflux is severely retarded such that the passive paracellular transportdictates the overall transepithelial transport characteristics. In addition, modelsuitable for investigating the transepithelial transport of cyclosporin A has been developed. A modification of the conventional Caco-2 model has been developed which has a calcium-free Ap donor-solution and a Bl receiver-solution containing the minimumcalcium concentration required to maintain monolayer integrity (100 μM). The influence of calcium and magnesium on the absorption of [14C]pamidronate was evaluated by comparing its transport across the conventional and minimum calciumCaco-2 models. Ap calcium and magnesium ions retard the Ap-to-Bl flux of pamidronate across Caco-2 monolayers. The effect of self-emulsifying oleic acid-Tween 80 formulations on Caco-2monolayer integrity has been investigated. Oleic acid-Tween 80 (1 0:1) formulations produced a dose-dependent disruption of Caco-2 monolayer integrity. This disruption was related to the oleic acid content of the formulation.
Resumo:
To examine the influence of l-arginine supplementation in combination with physical training on mitochondrial biomarkers from gastrocnemius muscle and its relationship with physical performance. Male Wistar rats were divided into four groups: control sedentary (SD), sedentary supplemented with l-arginine (SDLA), trained (TR) and trained supplemented with l-arginine (TRLA). Supplementation of l-arginine was administered by gavage (62.5mg/ml/day/rat). Physical training consisted of 60min/day, 5days/week, 0% grade, speed of 1.2km/h. The study lasted 8weeks. Skeletal muscle mitochondrial enriched fraction as well as cytoplasmic fractions were obtained for Western blotting and biochemical analyses. Protein expressions of transcriptor coactivator (PGC-1α), transcriptor factors (mtTFA), ATP synthase subunit c, cytochrome oxidase (COXIV), constitutive nitric oxide synthases (eNOS and nNOS), Cu/Zn-superoxide dismutase (SOD) and manganese-SOD (Mn-SOD) were evaluated. We also assessed in plasma: lipid profile, glycemia and malondialdehyde (MDA) levels. The nitrite/nitrate (NOx(-)) levels were measured in both plasma and cytosol fraction of the gastrocnemius muscle. 8-week l-arginine supplementation associated with physical training was effective in promoting greater tolerance to exercise that was accompanied by up-regulation of the protein expressions of mtTFA, PGC-1α, ATP synthase subunit c, COXIV, Cu/Zn-SOD and Mn-SOD. The upstream pathway was associated with improvement of NO bioavailability, but not in NO production since no changes in nNOS or eNOS protein expressions were observed. This combination would be an alternative approach for preventing cardiometabolic diseases given that in overt diseases a profound impairment in the physical performance of the patients is observed.