34 resultados para PROFIBUS
Resumo:
In previous works we have proposed a hybrid wired/wireless PROFIBUS solution where the interconnection between the heterogeneous media was accomplished through bridge-like devices with wireless stations being able to move between different wireless cells. Additionally, we had also proposed a worst-case timing analysis assuming that stations were stationary. In this paper we advance these previous works by proposing a worst-case timing analysis for the system’s message streams considering the effect of inter-cell mobility.
Resumo:
Recent technological developments are pulling fieldbus networks to support a new wide class of applications, such as industrial multimedia applications. These applications are usually supported by the widely used TCP/IP stack. It is thus essential to provide support to TCP/IP based applications, in fieldbus networks. This paper presents an effort that is being carried out to integrate the TCP/IP and PROFIBUS stacks, in order to support industrial multimedia applications, whilst guarantying the timing requirements of control-related traffic.
Resumo:
Profibus networks are widely used as the communication infrastructure for supporting distributed computer-controlled applications. Most of the times, these applications impose strict real-time requirements. Profibus-DP has gradually become the preferred Profibus application profile. It is usually implemented as a mono-master Profibus network, and is optimised for speed and efficiency. The aim of this paper is to analyse the real-time behaviour of this class of Profibus networks. Importantly, we develop a new methodology for evaluating the worst-case message response time in systems where high-priority and cyclic low-priority Profibus traffic coexist. The proposed analysis constitutes a powerful tool to guarantee prior to runtime the real-time behaviour of a distributed computer-controlled system based on a Profibus network, where the realtime traffic is supported either by high-priority or by cyclic poll Profibus messages.
Resumo:
In this paper, we analyse the ability of Profibus fieldbus to cope with the real-time requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events must be made available within a maximum bound time. Our methodology is based on the knowledge of real-time traffic characteristics, setting the network parameters in order to cope with timing requirements. Since non-real-time traffic characteristics are usually unknown at the design stage, we consider an operational profile where, constraining non-real-time traffic at the application level, we assure that realtime requirements are met.
Resumo:
A recent trend in distributed computer-controlled systems (DCCS) is to interconnect the distributed computing elements by means of multi-point broadcast networks. Since the network medium is shared between a number of network nodes, access contention exists and must be solved by a medium access control (MAC) protocol. Usually, DCCS impose real-time constraints. In essence, by real-time constraints we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. This motivates the use of communication networks with a MAC protocol that guarantees bounded access and response times to message requests. PROFIBUS is a communication network in which the MAC protocol is based on a simplified version of the timed-token protocol. In this paper we address the cycle time properties of the PROFIBUS MAC protocol, since the knowledge of these properties is of paramount importance for guaranteeing the real-time behaviour of a distributed computer-controlled system which is supported by this type of network.
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a Multiple Logical Ring (MLR) approach, thus with multiple independent tokens, where the communication between different domains was supported by the Inter-Domain Protocol (IDP). The proposed architecture also supports mobility of stations between different wireless cells. To that hybrid wired/wireless networking architecture we have proposed a worst-case response timing analysis of the IDP, without considering inter-cell mobility (or handoff) of stations. In this paper, we advance that previous work by proposing a worst-case timing analysis of the mobility procedure.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
The marriage of emerging information technologies with control technologies is a major driving force that, in the context of the factory-floor, is creating an enormous eagerness for extending the capabilities of currently available fieldbus networks to cover functionalities not considered up to a recent past. Providing wireless capabilities to such type of communication networks is a big share of that effort. The RFieldbus European project is just one example, where PROFIBUS was provided with suitable extensions for implementing hybrid wired/wireless communication systems. In RFieldbus, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating as repeaters, thus creating a single logical ring (SLR) network. The main advantage of the SLR approach is that the effort for protocol extensions is not significant. However, a multiple logical ring (MLR) approach provides traffic and error isolation between different network segments. This concept was introduced in, where an approach for a bridge-based architecture was briefly outlined. This paper will focus on the details of the inter-Domain Protocol (IDP), which is responsible for handling transactions between different network domains (wired or wireless) running the PROFIBUS protocol.
Resumo:
Future industrial control/multimedia applications will increasingly impose or benefit from wireless and mobile communications. Therefore, there is an enormous eagerness for extending currently available industrial communications networks with wireless and mobility capabilities. The RFieldbus European project is just one example, where a PROFIBUS-based hybrid (wired/wireless) architecture was specified and implemented. In the RFieldbus architecture, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating at the physical layer level, i.e. operating as repeaters. Instead, in this paper we will focus on a bridge-based approach, which presents several advantages. This concept was introduced in (Ferreira, et al., 2002), where a bridge-based approach was briefly outlined. Then, a specific Inter-Domain Protocol (IDP) was proposed to handle the Inter-Domain transactions in such a bridge-based approach (Ferreira, et al., 2003a). The major contribution of this paper is in extending these previous works by describing the protocol extensions to support inter-cell mobility in such a bridge-based hybrid wired/wireless PROFIBUS networks.
Resumo:
Fieldbus networks are becoming increasingly popular in industrial computer-controlled systems. More recently, there has been the desire to extend the capabilities of fieldbuses to cover functionalities not previously considered in such networks, with particular emphasis on industrial wireless communications. Thinking about wireless means considering hybrid wired/wireless solutions capable of interoperating with legacy (wired) systems. One possible solution is to use intermediate systems (IS) acting as repeaters to interconnect the wired and wireless parts. In contrast, we analyze a solution where intermediate systems are implemented as bridges/routers. We detail the main advantages in terms of dependability and timeliness, and propose mechanisms to manage message transactions and intercell mobility.
Resumo:
PROFIBUS is an international standard (IEC 61158) for factory-floor communications, with some hundreds of thousands of world-wide installations. However, it does not include any wireless capabilities. In this paper we propose a hybrid wired/wireless PROFIBUS solution where most of the design options are made in order to guarantee the proper real-time behaviour of the overall network. We address the timing unpredictability problems placed by the co-existence of heterogeneous transmission media in the same network. Moreover, we propose a novel solution to provide inter-cell mobility to PROFIBUS wireless nodes.
Resumo:
Technological developments are pulling fieldbus networks to support a new wide class of applications, such as industrial multimedia applications. To enable its use in this kind of applications the TCP/IP suite of protocols can be integrated within a fieldbus stack, leading to a dual-stack approach that is briefly outlined in the paper. One important requirement that must be fulfilled by this approach is that the hard real-time guarantees provided to the control-related traffic ("native" fieldbus traffic) are kept. At the same time it must also provide the desired quality of service (QoS) to IP applications. The focus of the paper is on how, in such a dual-stack approach, QoS can be efficiently provided to IP applications requiring quasi-constant bandwidth.
Resumo:
This paper provides a comprehensive study on how to use Profibus fieldbus networks to support real-time industrial communications, that is, on how to ensure the transmission of real-time messages within a maximum bound time. Profibus is base on a simplified timed token (TT) protocol, which is a well-proved solution for real-time communication systems. However, Profibus differs with respect to the TT protocol, thus preventing the application of the usual TT protocol real-time analysis. In fact, real-time solutions for networks based on the TT protocol rely on the possibility of allocating specific bandwidth for the real-time traffic. This means that a minimum amount of time is always available, at each token visit, to transmit real-time messages, transversely, with the Profibus protocol, in the worst case, only one real-time message is processed per token visit. The authors propose two approaches to guarantee the real-time behavior of the Profibus protocol: (1) an unconstrained low-priority traffic profile; and (2) a constrained low-priority traffic profile. The proposed analysis shows that the first profile is a suitable approach for more responsive systems (tighter deadlines), while the second allows for increased nonreal-time traffic throughput
Resumo:
The paper provides a comprehensive study on how to use Profibus networks to support real time communications, that is, ensuring the transmission of the real time messages before their deadlines. Profibus is based on a simplified Timed Token (TT) protocol, which is a well proved solution for real time communication systems. However, Profibus differences from the TT protocol prevent the application of the usual TT analysis. The main reason is that, conversely to the TT protocol, in the worst case, only one high priority message is processed per token visit. The major contribution of the paper is to prove that, despite this shortcoming, it is possible to guarantee communication real time behaviour with the Profibus protocol