879 resultados para PRINCIPAL REFRACTIVE-INDEXES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isentropic compressibilities ?S, excess isentropic compressibilities image, excess molar volumes VE, viscosity deviations ??, and excess Gibbs energy of activation of viscous flow ?G*E for nine binary mixtures of C4H8O with CCl4, CHCl3, CHCl2CHCl2, 1-C6H13Cl, 1-C6H13Br, CH3CO2CH3, CH3CO2C2H5, CH3CO2C4H9, and CH3CO2C5H11 at 303.15 K have been derived from experimental densities ?, speeds of sound u, refractive indexes nD and viscosities ?. The limiting values of excess partial molar volumes of C4H8O at infinite dilution image in different solvents have been estimated. The results obtained for dynamic viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg–Nissan, Tamura–Kurata, Hind–McLaughlin–Ubbelohde, Katti–Chaudhri, McAllister, Heric, and Auslaender. Finally, the experimental refractive indexes were compared with the predicted results for Lorentz–Lorenz, Dale–Gladstone, Eykman, Arago–Boit, Newton, Oster, Heller, and Wiener equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective medium theory is useful for designing optical elements with form birefringent subwavelength structures. Thin films fabricated by oblique deposition are similar to the two-dimensional surface relief subwavelength gratings. We use the effective medium theory to calculate the anisotropic optical properties of the thin films with oblique columnar structures. The effective refractive indices and the directions are calculated from effective medium theory. It is shown that optical thin films with predetermined refractive indices and birefringence may be engineered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the optical properties and microstructure of Ta2O5 film deposited with the glancing angle deposition technique. The tilted nanocolumn microstructure, examined with scanning electron microscopy, induces the optical anisotropy of thin film. The optical properties of thin film are characterized with an inverse synthesis method. Based on the Cauchy model, the dispersion equations of optical constants of film are determined from the transmittance spectra measured at normal and oblique incidence over 400-800 nm. The starting values derived with an envelope method quicken the optimization process greatly. The dispersion of the principal indices N-1, N-2, and N-3 and the thickness d of thin film are presented statistically. A good agreement between the measured optical properties and theoretical calculation is obtained, which validates the model established for thin film produced by glancing angle deposition. (C) 2008 Optical Society of America

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linear and nonlinear optical (NLO) properties of KNbO3 in various phases are calculated from their crystal structures. Nonlinear optical tensor coefficients are found to be very sensitive to the atomic geometry, changing as much as 85% between the ferroelectric tetragonal and rhombohedral phases. The predicted principal refractive indices are also found to be sensitive to their structural changes. In the tetragonal phase KNbO3 has the largest NLO responses, in the orthorhombic phase KNbO3 has the relative larger NLO coefficients, and in the rhombohedral structure KNbO3 has the large and homogeneous NLO properties. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physical parameters of different types of lenses were measured through digital speckle pattern interferometry (DSPI) using a multimode diode laser as light source. When such lasers emit two or more longitudinal modes simultaneously the speckle image of an object appears covered of contour fringes. By performing the quantitative fringe evaluation the radii of curvature as well as the refractive indexes of the lenses were determined. The fringe quantitative evaluation was carried out through the four- and the eight-stepping techniques and the branch-cut method was employed for phase unwrapping. With all these parameters the focal length was calculated. This whole-field multi-wavelength method does enable the characterization of spherical and aspherical lenses and of positive and negative ones as well. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eyelids play an important role in lubricating and protecting the surface of the eye. Each blink serves to spread fresh tears, remove debris and replenish the smooth optical surface of the eye. Yet little is known about how the eyelids contact the ocular surface and what pressure distribution exists between the eyelids and cornea. As the principal refractive component of the eye, the cornea is a major element of the eye’s optics. The optical properties of the cornea are known to be susceptible to the pressure exerted by the eyelids. Abnormal eyelids, due to disease, have altered pressure on the ocular surface due to changes in the shape, thickness or position of the eyelids. Normal eyelids also cause corneal distortions that are most often noticed when they are resting closer to the corneal centre (for example during reading). There were many reports of monocular diplopia after reading due to corneal distortion, but prior to videokeratoscopes these localised changes could not be measured. This thesis has measured the influence of eyelid pressure on the cornea after short-term near tasks and techniques were developed to quantify eyelid pressure and its distribution. The profile of the wave-like eyelid-induced corneal changes and the refractive effects of these distortions were investigated. Corneal topography changes due to both the upper and lower eyelids were measured for four tasks involving two angles of vertical downward gaze (20° and 40°) and two near work tasks (reading and steady fixation). After examining the depth and shape of the corneal changes, conclusions were reached regarding the magnitude and distribution of upper and lower eyelid pressure for these task conditions. The degree of downward gaze appears to alter the upper eyelid pressure on the cornea, with deeper changes occurring after greater angles of downward gaze. Although the lower eyelid was further from the corneal centre in large angles of downward gaze, its effect on the cornea was greater than that of the upper eyelid. Eyelid tilt, curvature, and position were found to be influential in the magnitude of eyelid-induced corneal changes. Refractively these corneal changes are clinically and optically significant with mean spherical and astigmatic changes of about 0.25 D after only 15 minutes of downward gaze (40° reading and steady fixation conditions). Due to the magnitude of these changes, eyelid pressure in downward gaze offers a possible explanation for some of the day-to-day variation observed in refraction. Considering the magnitude of these changes and previous work on their regression, it is recommended that sustained tasks performed in downward gaze should be avoided for at least 30 minutes before corneal and refractive assessment requiring high accuracy. Novel procedures were developed to use a thin (0.17 mm) tactile piezoresistive pressure sensor mounted on a rigid contact lens to measure eyelid pressure. A hydrostatic calibration system was constructed to convert raw digital output of the sensors to actual pressure units. Conditioning the sensor prior to use regulated the measurement response and sensor output was found to stabilise about 10 seconds after loading. The influences of various external factors on sensor output were studied. While the sensor output drifted slightly over several hours, it was not significant over the measurement time of 30 seconds used for eyelid pressure, as long as the length of the calibration and measurement recordings were matched. The error associated with calibrating at room temperature but measuring at ocular surface temperature led to a very small overestimation of pressure. To optimally position the sensor-contact lens combination under the eyelid margin, an in vivo measurement apparatus was constructed. Using this system, eyelid pressure increases were observed when the upper eyelid was placed on the sensor and a significant increase was apparent when the eyelid pressure was increased by pulling the upper eyelid tighter against the eye. For a group of young adult subjects, upper eyelid pressure was measured using this piezoresistive sensor system. Three models of contact between the eyelid and ocular surface were used to calibrate the pressure readings. The first model assumed contact between the eyelid and pressure sensor over more than the pressure cell width of 1.14 mm. Using thin pressure sensitive carbon paper placed under the eyelid, a contact imprint was measured and this width used for the second model of contact. Lastly as Marx’s line has been implicated as the region of contact with the ocular surface, its width was measured and used as the region of contact for the third model. The mean eyelid pressures calculated using these three models for the group of young subjects were 3.8 ± 0.7 mmHg (whole cell), 8.0 ± 3.4 mmHg (imprint width) and 55 ± 26 mmHg (Marx’s line). The carbon imprints using Pressurex-micro confirmed previous suggestions that a band of the eyelid margin has primary contact with the ocular surface and provided the best estimate of the contact region and hence eyelid pressure. Although it is difficult to directly compare the results with previous eyelid pressure measurement attempts, the eyelid pressure calculated using this model was slightly higher than previous manometer measurements but showed good agreement with the eyelid force estimated using an eyelid tensiometer. The work described in this thesis has shown that the eyelids have a significant influence on corneal shape, even after short-term tasks (15 minutes). Instrumentation was developed using piezoresistive sensors to measure eyelid pressure. Measurements for the upper eyelid combined with estimates of the contact region between the cornea and the eyelid enabled quantification of the upper eyelid pressure for a group of young adult subjects. These techniques will allow further investigation of the interaction between the eyelids and the surface of the eye.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single crystals of lithium D-isoascorbate monohydrate (LDAM), (C6H7O6Li center dot H2O), are grown by a solution growth method. The crystal structure of LDAM is solved using single crystal X-ray diffraction. The space group is orthorhombic P2(1)2(1)2(1) with four formula units per unit cell and lattice parameters a = 7.7836(3) angstrom, b = 8.7456(3) angstrom, and c = 11.0368(4) angstrom. Solubility of the material in water is determined thermogravimetrically and found to have a positive temperature coefficient of solubility. Large optical quality single crystals are subsequently grown from aqueous solution by a slow cooling method. The crystal has a bulky prismatic habit and among the prominent faces the c face appears as the only principal morphological face. The crystal exhibits a (010) cleavage. Dielectric spectroscopy reveals a nearly Debye type Cole-Cole behavior with anisotropy in relaxation. Optical transmission range is found to be from 300 to 1400 nm. The principal refractive indices of this biaxial crystal, measured using Brewster's angle method, at wavelengths 405, 543, and 632.8 nm, show high dispersion. The crystal is negative biaxial with 2V(z) = 107.8 degrees (405 nm) and belongs to the Hobden class 3. Theoretically generated type 1 and type 2 second order phase matching curves match very well with the experimental results. The second-order nonlinear coefficient d(14) was determined to be 7 x 10(-13) m/V. For the optimum phase matching direction (type 2), the second-order effective nonlinear coefficient and the walk off angle are determined to be 0.84 times d(14) and 3.5 degrees respectively. The crystal possesses high multiple surface damage thresholds of 18 GW/cm(2) and 8 GW/cm(2) at laser wavelengths 1064 and 532 nm, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过分析波矢沿任意方向的单轴晶体的折射率,在光轴位于入射面内时,给出了入射光分别为s光和p光的反射率拟合函数。利用改进的反射率扫描仪,测量了CaCO3晶体的s光和p光反射率随入射角变化情况,由理论拟合获得单轴晶体的两个主折射率,分别为no=1.6559和ne=1.4851。这种方法不需要对样品进行加工,其精度达到0.0001。另外,对于晶体光轴未知的情况,采用改进的布儒斯特技术分别测出三个晶体表面的布儒斯特角,由此可以确定光轴的方向。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical and structural properties of anodized AlxGa1-xAs films were investigated by using optical reflectance, X-ray photoemission and Auger electron spectroscopy (XPS and AES). II was found that the anodization process occurs progressively from the surface to the bulk of AlxGa1-xAs and the formed oxidation film comprises mainly oxides of Al and Ga together with a relatively small amount of As. The refractive indexes of the anodized Al0.8Ga0.2As film and Al0.8Ga0.2As film itself were deduced to be about 1.80 and 3.25, respectively, indicating that the anodization film is desirable for anti-reflection coating of the surface of AlxGa1-xAs/GaAs solar cells. (C) 1997 Elsevier Science S.A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From the chemical bond viewpoint, second-order non-linear optical (NLO) tenser coefficients of KNbO3 and LiNbO3 crystals have been calculated. By using the bond-valence theory of complex crystals and the modified bond-charge model, we were able to determine contributions of each type of constituent chemical bond to the total second-order NLO susceptibility. The tenser values thus calculated are in good agreement with experimental data. From the comparison of NLO tenser coefficients of these two crystals, we found that the major NLO contributors are KO12 groups and LiO6 octahedra not the distorted NbO6 octahedra. The difference between their NLO properties arises from their different structural characters, and the high coordination number of constituent elements in KNbO3 makes its valence electrons become more delocalised compared with those of LiNbO3. (C) 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method to predict the densities of a range of ionic liquids from their surface tensions, and vice versa, using a surface-tension-weighted molar volume, the parachor, is reported. The parachors of ionic liquids containing 1-alkyl-3-methylimidazolium cations were determined experimentally, but were also calculated directly from their structural compositions using existing parachor contribution data for neutral compounds. The calculated and experimentally determined parachors were remarkably similar, and the latter data were subsequently employed to predict the densities and surface tensions of the investigated ionic liquids. Using a similar approach, the molar refractions of ionic liquids were determined experimentally, as well as calculated using existing molar refraction contribution data for uncharged compounds. The calculated molar refraction data were employed to predict the refractive indices of the ionic liquids from their surface tensions. The errors involved in the refractive index predictions were much higher than the analogous predictions employing the parachor, but nevertheless demonstrated the potential for developing parachor and molar refraction contribution data for ions as tools to predict ionic liquid physical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main purpose of this work is to present and to interpret the change of structure and physical properties of tantalum oxynitride (TaNxOy) thin films, produced by dc reactive magnetron sputtering, by varying the processing parameters. A set of TaNxOy films was prepared by varying the reactive gases flow rate, using a N2/O2 gas mixture with a concentration ratio of 17:3. The different films, obtained by this process, exhibited significant differences. The obtained composition and the interpretation of X-ray diffraction results, shows that, depending on the partial pressure of the reactive gases, the films are: essentially dark grey metallic, when the atomic ratio (N + O)/Ta < 0.1, evidencing a tetragonal β-Ta structure; grey-brownish, when 0.1 < (N + O)/Ta < 1, exhibiting a face-centred cubic (fcc) TaN-like structure; and transparent oxide-type, when (N + O)/Ta > 1, evidencing the existence of Ta2O5, but with an amorphous structure. These transparent films exhibit refractive indexes, in the visible region, always higher than 2.0. The wear resistance of the films is relatively good. The best behaviour was obtained for the films with (N + O)/Ta ≈ 0.5 and (N + O)/Ta ≈ 1.3.