830 resultados para PRINCIPAL COMPONENTS-ANALYSIS
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia. Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore, three geographical areas with unique environmental characteristics could be identified.
Resumo:
Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150–200 nucleotides at the 3' end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.
Resumo:
In the current context of serious climate changes, where the increase of the frequency of some extreme events occurrence can enhance the rate of periods prone to high intensity forest fires, the National Forest Authority often implements, in several Portuguese forest areas, a regular set of measures in order to control the amount of fuel mass availability (PNDFCI, 2008). In the present work we’ll present a preliminary analysis concerning the assessment of the consequences given by the implementation of prescribed fire measures to control the amount of fuel mass in soil recovery, in particular in terms of its water retention capacity, its organic matter content, pH and content of iron. This work is included in a larger study (Meira-Castro, 2009(a); Meira-Castro, 2009(b)). According to the established praxis on the data collection, embodied in multidimensional matrices of n columns (variables in analysis) by p lines (sampled areas at different depths), and also considering the quantitative data nature present in this study, we’ve chosen a methodological approach that considers the multivariate statistical analysis, in particular, the Principal Component Analysis (PCA ) (Góis, 2004). The experiments were carried out in a soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, NW Portugal, who was able to maintain itself intact from prescribed burnings from four years and was submit to prescribed fire in March 2008. The soils samples were collected from five different plots at six different time periods. The methodological option that was adopted have allowed us to identify the most relevant relational structures inside the n variables, the p samples and in two sets at the same time (Garcia-Pereira, 1990). Consequently, and in addition to the traditional outputs produced from the PCA, we have analyzed the influence of both sampling depths and geomorphological environments in the behavior of all variables involved.
Resumo:
The component structure of a 34-item scale measuring different aspects of job satisfaction was investigated among extension officers in North West Province, South Africa. A simple random sampling technique was used to select 40 extension officers from which data were collected. A structured questionnaire consisting of 34 job satisfaction and 10 personal characteristic items was administered to the extension officers. Items on job satisfaction were measured at interval level and analyzedwith Principal ComponentAnalysis. Most of the respondents (82.5%) weremales, between 40 to 45 years, 85% were married and 87.5% had a diploma as their educational qualification. Furthermore, 54% of the households size between 4 to 6 persons, whereas 75% were Christians. The majority of the extension officers lived in their job area (82.5), while 80% covered at least 3 communities and 3 farmer groups. In terms of number of farmers covered, only 40% of the extension officers covered more than 500 farmers and 45% travelled more than 40 km to reach their farmers. From the job satisfaction items 9 components were extracted to show areas for job satisfaction among extension officers. These were in-service training, research policies, communicating recommended practices, financial support for self and family, quality of technical help, opportunity to advance education, management and control of operations, rewarding system and sanctions. The results have several implications for motivating extension officers for high job performance especially with large number of clients and small number of extension agents.
Resumo:
This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia, Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore. three geographical areas with unique environmental characteristics could be identified. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Principal components analysis (PCA) has been described for over 50 years; however, it is rarely applied to the analysis of epidemiological data. In this study PCA was critically appraised in its ability to reveal relationships between pulsed-field gel electrophoresis (PFGE) profiles of methicillin- resistant Staphylococcus aureus (MRSA) in comparison to the more commonly employed cluster analysis and representation by dendrograms. The PFGE type following SmaI chromosomal digest was determined for 44 multidrug-resistant hospital-acquired methicillin-resistant S. aureus (MR-HA-MRSA) isolates, two multidrug-resistant community-acquired MRSA (MR-CA-MRSA), 50 hospital-acquired MRSA (HA-MRSA) isolates (from the University Hospital Birmingham, NHS Trust, UK) and 34 community-acquired MRSA (CA-MRSA) isolates (from general practitioners in Birmingham, UK). Strain relatedness was determined using Dice band-matching with UPGMA clustering and PCA. The results indicated that PCA revealed relationships between MRSA strains, which were more strongly correlated with known epidemiology, most likely because, unlike cluster analysis, PCA does not have the constraint of generating a hierarchic classification. In addition, PCA provides the opportunity for further analysis to identify key polymorphic bands within complex genotypic profiles, which is not always possible with dendrograms. Here we provide a detailed description of a PCA method for the analysis of PFGE profiles to complement further the epidemiological study of infectious disease. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Three hypotheses have been proposed to explain neuropathological heterogeneity in Alzheimer's disease (AD): the presence of distinct subtypes ('subtype hypothesis'), variation in the stage of the disease ('phase hypothesis') and variation in the origin and progression of the disease ('compensation hypothesis'). To test these hypotheses, variation in the distribution and severity of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in 80 cases of AD using principal components analysis (PCA). Principal components analysis using the cases as variables (Q-type analysis) suggested that individual differences between patients were continuously distributed rather than the cases being clustered into distinct subtypes. In addition, PCA using the abundances of SP and NFT as variables (R-type analysis) suggested that variations in the presence and abundance of lesions in the frontal and occipital lobes, the cingulate gyrus and the posterior parahippocampal gyrus were the most important sources of heterogeneity consistent with the presence of different stages of the disease. In addition, in a subgroup of patients, individual differences were related to apolipoprotein E (ApoE) genotype, the presence and severity of SP in the frontal and occipital cortex being significantly increased in patients expressing apolipoprotein (Apo)E allele ε4. It was concluded that some of the neuropathological heterogeneity in our AD cases may be consistent with the 'phase hypothesis'. A major factor determining this variation in late-onset cases was ApoE genotype with accelerated rates of spread of the pathology in patients expressing allele ε4.
Resumo:
Ten cases of neuronal intermediate filament inclusion disease (NIFID) were studied quantitatively. The α-internexin positive neurofilament inclusions (NI) were most abundant in the motor cortex and CA sectors of the hippocampus. The densities of the NI and the swollen achromatic neurons (SN) were similar in laminae II/III and V/VI but glial cell density was greater in V/VI. The density of the NI was positively correlated with the SN and the glial cells. Principal components analysis (PCA) suggested that PC1 was associated with variation in neuronal loss in the frontal/temporal lobes and PC2 with neuronal loss in the frontal lobe and NI density in the parahippocampal gyrus. The data suggest: 1) frontal and temporal lobe degeneration in NIFID is associated with the widespread formation of NI and SN, 2) NI and SN affect cortical laminae II/III and V/VI, 3) the NI and SN affect closely related neuronal populations, and 4) variations in neuronal loss and in the density of NI were the most important sources of pathological heterogeneity. © Springer-Verlag 2005.
Resumo:
In Statnotes 24 and 25, multiple linear regression, a statistical method that examines the relationship between a single dependent variable (Y) and two or more independent variables (X), was described. The principle objective of such an analysis was to determine which of the X variables had a significant influence on Y and to construct an equation that predicts Y from the X variables. ‘Principal components analysis’ (PCA) and ‘factor analysis’ (FA) are also methods of examining the relationships between different variables but they differ from multiple regression in that no distinction is made between the dependent and independent variables, all variables being essentially treated the same. Originally, PCA and FA were regarded as distinct methods but in recent times they have been combined into a single analysis, PCA often being the first stage of a FA. The basic objective of a PCA/FA is to examine the relationships between the variables or the ‘structure’ of the variables and to determine whether these relationships can be explained by a smaller number of ‘factors’. This statnote describes the use of PCA/FA in the analysis of the differences between the DNA profiles of different MRSA strains introduced in Statnote 26.
Resumo:
A Principal Components Analysis of neuropathological data from 79 Alzheimer’s disease (AD) cases was performed to determine whether there was evidence for subtypes of the disease. Two principal components were extracted from the data which accounted for 72% and 12% of the total variance respectively. The results suggested that 1) AD was heterogeneous but subtypes could not be clearly defined; 2) the heterogeneity, in part, reflected disease onset; 3) familial cases did not constitute a distinct subtype of AD and 4) there were two forms of late onset AD, one of which was associated with less senile plaque and neurofibrillary tangle development but with a greater degree of brain atherosclerosis.
Resumo:
Aeromonas genomes were investigated by restriction digesting chromosomal DNA with the endonuclease XbaI, separation of restriction fragments by pulsed field gel electrophoresis (PFGE) and principal components analysis (PCA) of resulting separation patterns. A. salmonicida salmonicida were unique amongst the isolates investigated. Separation profiles of these isolates were similar and all characterised by a distinct absence of bands in the 250kb region. Principal components analysis represented these strains as a clearly defined homogeneous group separated by insignificant Euclidian distances. However, A. salmonicida achromogenes isolates in common with those of A. hydrophila and A. sobria were shown by principal components analysis to be more heterogeneous in nature. Fragments from these isolates were more uniform in size distribution but as demonstrated by the Euclidian distances attained through PCA potentially characteristic of each strain. Furthermore passaging of Aeromonas isolates through an appropriate host did not greatly modify fragment separation profiles, indicative of the genomic stability of test aeromonads and the potential of restriction digesting/PFGE/PCA in Aeromonas typing.