810 resultados para PRIMARY-SECONDARY HYBRID BATTERIES
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
This study aimed to explore how a new model of integrated primary/secondary care for type 2 diabetes management, the Brisbane South Complex Diabetes Service (BSCDS), related to improved diabetes management in a selected group of patients. We used a qualitative research design to obtain detailed accounts from the BSCDS via semi-structured interviews with 10 patients. The interviews were fully transcribed and systematically coded using a form of thematic analysis. Participants’ responses were grouped in relation to: (1) Patient-centred care; (2) Effective multiprofessional teamwork; and (3) Empowering patients. The key features of this integrated primary/secondary care model were accessibility and its delivery within a positive health care environment, clear and supportive interpersonal communication between patients and health care providers, and patients seeing themselves as being part of the team-based care. The BSCDS delivered patient-centred care and achieved patient engagement in ways that may have contributed to improved type 2 diabetes management in these participants.
Resumo:
Introduction: Diabetes has traditionally been managed as a single chronic disease state, but it exists with co-morbidities such as depression and metabolic syndrome. Treatment is multifaceted, requiring both primary and secondary care, however, the delivery of diabetes care is often fragmented. Integrated chronic disease management is a growing model of interest, and is underpinned by the chronic care model (CCM), devised as a guide for primary care management of patients with chronic conditions. The model identifies six key elements for effective care, and has shown promise in improving the management of diabetes. Aim: To find empirical evidence of integrated care interventions targeted at co-morbidities including diabetes, across primary/secondary care. Method: A systematic review of peer reviewed literature from PubMed, CINAHL, Embase, Cochrane Library and Joanna Briggs was performed. Studies were reviewed according to inclusion criteria- studies published in English, between 2004-2014, empirical studies, studies with evidence of primary/secondary implementation, and those dealing with chronic co-morbid disease states. Results: 51 studies met the inclusion criteria. Included studies were mostly from the US (38), with five from Australia, UK (2), Canada (2), Netherlands (1), Norway (1), Ireland (1), and one multi-country study. It was found that all interventions adopted at least one (average 3-4) of the chronic care model, with the majority implementing delivery system redesign activities within the primary care practice/s. We found evidence of interventions which significantly reduced emergency department and hospital admissions, improved processes of care, patient health outcomes such as HbA1c, improved patient satisfaction, and reduced costs. Conclusion/Implications for practice: Diabetes exists as a co-morbid disease, requiring both primary and secondary care. We found that integrated care interventions adopting elements of the chronic care model positively impacted on patient outcomes, service utilisation, as well as costs. This review has highlighted that it may not be necessary to adopt all CCM elements to improve clinical outcomes, patient satisfaction and costs.
Resumo:
The relationship between components of emotional intelligence (EI) (interpersonal
ability, intrapersonal ability, adaptability and stress management) and academic
performance in English, maths and science was examined in a sample of 86 children
(49 males and 37 females) aged 11–12 years during the primary–secondary school
transition period. Results indicated that for both males and females, intrapersonal
ability had little relationship with academic achievement, while adaptability had the
strongest relationship with achievement in all subjects. Gender differences were particularly
pronounced for science, for which stronger relationships were observed with all
EI components for males. In addition, apparent only for males was a negative
relationship between stress management and science. These findings offer support for
the current inclusion of a personal and emotional element in the primary school curriculum,
and indicate that such training is likely to help males more than females to make
a successful transition from primary to secondary school.
Motivational trajectories for early language learning across the primary-secondary school transition
Resumo:
The transition from primary to secondary school is an area of concern across a range of curriculum subjects, and this is no less so for foreign language learning. Indeed problems with transition have been identified in England as an important barrier to the introduction of language learning to the primary school curriculum, with implications for learners’ longer-term motivation for the subject. This longitudinal study investigated, through a questionnaire, the development of 233 learners’ motivation for learning French in England, during the transition from primary to secondary schooling. It also explored whether levels and patterns of motivation differed according to the type of language teaching experienced, comparing a largely oracy-focused approach with one with greater emphasis on literacy activities. Learners showed high and increasing levels of motivation across transition, placing particular value on learning French for travel. Being taught through an oracy or a literacy-focused approach had less impact on learners’ motivation than broader classroom experiences, with the development of a sense of progress and feeling that instruction met their learning needs being especially important. A growing disjuncture emerged between valuing the learning of French for travel/communication and learners’ low levels of self-efficacy for communication with native speakers, together with a desire for more communication-based activities. By the end of the first year of secondary school less positive attitudes towards learning French and less optimism about the possibility of future progress were beginning to emerge. The paper concludes by outlining the implications of the study for classroom practice in language learning.
Resumo:
This study provides additional insight into how outdoor learning can be used as a vehicle to address transition issues. This study analyses the benefits of outdoor learning through the use of shared learning days with young people in the primary-secondary transition phase. This paper argues that a carefully designed programme of outdoor ‘shared learning days’ with young people in both phases working together is a sound model to help address the recommendations arising from specific transition issues (Mullan, 2014; Rose, 2009) through the delivery of aligned outcomes (cognitive, affective, interpersonal/social and physical/behavioural) and impact from learning science outdoors (Rickinson et al., 2004).
Resumo:
The relationship between school belongingness and mental health functioning before and after the primary-secondary school transition has not been previously investigated in students with and without disabilities. This study used a prospective longitudinal design to test the bi-directional relationships between these constructs, by surveying 266 students with and without disabilities and their parents, 6-months before and after the transition to secondary school. Cross-lagged multi-group analyses found student perception of belongingness in the final year of primary school to contribute to change in their mental health functioning a year later. The beneficial longitudinal effects of school belongingness on subsequent mental health functioning were evident in all student subgroups; even after accounting for prior mental health scores and the cross-time stability in mental health functioning and school belongingness scores. Findings of the current study substantiate the role of school contextual influences on early adolescent mental health functioning. They highlight the importance for primary and secondary schools to assess students' school belongingness and mental health functioning and transfer these records as part of the transition process, so that appropriate scaffolds are in place to support those in need. Longer term longitudinal studies are needed to increase the understanding of the temporal sequencing between school belongingness and mental health functioning of all mainstream students.
Resumo:
Students negotiate the transition to secondary school in different ways. While some thrive on the opportunity, others are challenged. A prospective longitudinal design was used to determine the contribution of personal background and school contextual factors on academic competence (AC) and mental health functioning (MHF) of 266 students, 6-months before and after the transition to secondary school. Data from 197 typically developing students and 69 students with a disability were analysed using hierarchical linear regression modelling. Both in primary and secondary school, students with a disability and from socially disadvantaged backgrounds gained poorer scores for AC and MHF than their typically developing and more affluent counterparts. Students who attended independent and mid-range sized primary schools had the highest concurrent AC. Those from independent primary schools had the lowest MHF. The primary school organisational model significantly influenced post-transition AC scores; with students from Kindergarten--Year 7 schools reporting the lowest scores, while those from the Kindergarten--Year 12 structure without middle school having the highest scores. Attending a school which used the Kindergarten--Year 12 with middle school structure was associated with a reduction in AC scores across the transition. Personal background factors accounted for the majority of the variability in post-transition AC and MHF. The contribution of school contextual factors was relatively minor. There is a potential opportunity for schools to provide support to disadvantaged students before the transition to secondary school, as they continue to be at a disadvantage after the transition.
Resumo:
This work is part of a bigger project which aims to research the potential development of commercial opportunities for the re-use of batteries after their use in low carbon vehicles on an electricity grid or microgrid system. There are three main revenue streams (peak load lopping on the distribution Network to allow for network re-enforcement deferral, National Grid primary/ secondary/ high frequency response, customer energy management optimization). These incomes streams are dependent on the grid system being present. However, there is additional opportunity to be gained from also using these batteries to provide UPS backup when the grid is no longer present. Most UPS or ESS on the market use new batteries in conjunction with a two level converter interface. This produces a reliable backup solution in the case of loss of mains power, but may be expensive to implement. This paper introduces a modular multilevel cascade converter (MMCC) based ESS using second-life batteries for use on a grid independent industrial plant without any additional onsite generator as a potentially cheaper alternative. The number of modules has been designed for a given reliability target and these modules could be used to minimize/eliminate the output filter. An appropriate strategy to provide voltage and frequency control in a grid independent system is described and simulated under different disturbance conditions such as load switching, fault conditions or a large motor starting. A comparison of the results from the modular topology against a traditional two level converter is provided to prove similar performance criteria. The proposed ESS and control strategy is an acceptable way of providing backup power in the event of loss of grid. Additional financial benefit to the customer may be obtained by using a second life battery in this way.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.
Resumo:
The use of ex-transportation battery system (i.e. second life EV/HEV batteries) in grid applications is an emerging field of study. A hybrid battery scheme offers a more practical approach in second life battery energy storage systems because battery modules could be from different sources/ vehicle manufacturers depending on the second life supply chain and have different characteristics e.g. voltage levels, maximum capacity and also different levels of degradations. Recent research studies have suggested a dc-side modular multilevel converter topology to integrate these hybrid batteries to a grid-tie inverter. Depending on the battery module characteristics, the dc-side modular converter can adopt different modes such as boost, buck or boost-buck to suitably transfer the power from battery to the grid. These modes have different switching techniques, control range, different efficiencies, which give a system designer choice on operational mode. This paper presents an analysis and comparative study of all the modes of the converter along with their switching performances in detail to understand the relative advantages and disadvantages of each mode to help to select the suitable converter mode. Detailed study of all the converter modes and thorough experimental results based on a multi-modular converter prototype based on hybrid batteries has been presented to validate the analysis.
Resumo:
The young people who populate our classrooms live in a changed and rapidly changing society: a society where information is the most valued commodity and where traditional ‘truth’s such as nation and family are increasingly destabilized and fragmented. Educators at primary, secondary and tertiary level must, with some urgency, address issues relating the emergence of new citizenships and identities, the impact of new technologies and new economies. Our pedagogy and curriculums must be relevant to the need of students now and in the future. The School of Education, The University of Queensland is addressing issues of change, new technologies, new work places, critical citizenry and the need for pedagogical and curriculum innovation through the development of a new Middle Years of Schooling Dual Degree program. This program is designed to equip pre-service teachers to approach pedagogy and curriculum in innovative ways and to challenge them to embrace diversity and change. This paper outlines the key features of the Middle Years of Schooling Dual Degree, identifying a number of innovative approaches to pre-service teacher education.