944 resultados para PRESSURE DROP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new set of experimental pressure drop data, collected aboard the Russian IL-76MDK, is reported for bubbly airwater two-phase flow in a square channel with a cross-sectional area of 12x 12mm(2). The present data are compared to several frequently used empirical models, e.g. homogeneous model, Lockhart-Martinelli-Chisholm correlation and Friedel's model. It is shown that the predictions of the models mentioned above are generally not satisfied. A new homogeneous model is developed based on the analysis of the characteristics of bubbly two-phase flow at reduced gravity. It is tested with the present data and other data collected by other researchers in circular pipes. Some questions related to the present model are also discussed. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the experimental and theoretical studies of gas-liquid bubbly flow in vertical upward pipeline carried out at Institute of Mechanics, Chinese Academy of Sciences. Bubbly flow in a vertical pipe with a 3 m long and 5 cm inner diameter plexiglass pipe was experimentally investigated, and studies carried out on the relationship between superficial velocities of the liquid and gas phases and pressure gradient is described. The developed drift-flux model applied to gas-liquid bubbly flow is presented, and the results are compared against the experimental data measured by ours in air/water vertical pipes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding, David; Phillips, P.M.; Philips, T.N., (2006) 'Contraction/expansion flows: The pressure drop and related issues', Journal of Non-Newtonian Fluid Mechanics 137 pp.31-38 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of the pressure drop for turbulent single-phase fluid flow around sharp 90° bends is difficult owing to the complexity of the flow arising from frictional and separation effects. Several empirical equations exist, which accurately predict the pressure loss due to frictional effects. More recently, Crawford et al. [1] proposed an equation for the prediction of pressure loss due to separation of the flow. This work proposes a new composite equation for the prediction of pressure drop due to separation of the flow, which incorporates bends with ratio R/r <2. A new composite equation is proposed to predict pressure losses over the Reynolds number range 4 x 103-3 x 105. The predictions from the new equation are within a range of -4 to +6 per cent of existing experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a model is presented that describes the pressure drop of gas-liquid Taylor flow in round capillaries with a channel diameter typically less than 1 mm. The analysis of Bretherton (J Fluid Mech 10:166-188, 1961) for the pressure drop over a single gas bubble for vanishing liquid film thickness is extended to include a non-negligible liquid film thickness using the analysis of Aussillous and Qu,r, (Phys Fluids 12(10):2367-2371, 2000). This result is combined with the Hagen-Poiseuille equation for liquid flow using a mass balance-based Taylor flow model previously developed by the authors (Warnier et al. in Chem Eng J 135S:S153-S158, 2007). The model presented in this paper includes the effect of the liquid slug length on the pressure drop similar to the model of Kreutzer et al. (AIChE J 51(9):2428-2440, 2005). Additionally, the gas bubble velocity is taken into account, thereby increasing the accuracy of the pressure drop predictions compared to those of the model of Kreutzer et al. Experimental data were obtained for nitrogen-water Taylor flow in a round glass channel with an inner diameter of 250 mu m. The capillary number Ca (gl) varied between 2.3 x 10(-3) and 8.8 x 10(-3) and the Reynolds number Re (gl) varied between 41 and 159. The presented model describes the experimental results with an accuracy of +/- 4% of the measured values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5 m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 mu m). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz, the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%.