999 resultados para PPAR alpha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feed back-control led regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase 11 enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPARa agonist WY14643 to a larger extent than after induction with either Compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UCT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-incluced reduction in energy expenditure by fatty acids as natural PPARa ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of peroxisome proliferator-activated receptors (PPARs) chi and beta in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPAR chi levels only changed with culturing post confluence, PPAR beta levels increased independent of the method of differentiation. To explore further the differences induced by NaB. we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48 h. Again a very different expression pattern was observed with PPAR-1 increasing after 4 h and remaining elevated, while PPAR beta increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPAR beta are more closely associated with differentiation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Receptores ativadores de proliferação perixossomal(PPARs) são fatores de transcrição envolvidos com a oxidação dos ácidos graxos e proliferação celular, mediando diversas vias, o que representa uma estratégia promissora para enfrentar as características da síndrome metabólica. Existem três isoformas de PPARs(PPARalfa, beta/delta e gama), que são diferencialmente expressos em diferentes tecidos.No presente estudo, objetivou-se avaliar os efeitos pleiotrópicos da telmisartana, um anti-hipertensivo, bloqueador do receptor AT1 da angiotensina e agonista parcial PPAR gama, no tecido adiposo branco (TAB) e marrom (TAM) em camundongos obesos induzido por dieta.Camundongos machos, da linhagem C57BL/6 foram alimentados com uma dieta padrão (standard-chow, 10% da energia proveniente de lipídios) ou com uma dieta com alto teor lipídico (high fat, 49% de energia proveniente de lipídios) durante 10 semanas. Em seguida, os animais foram distribuídos aleatoriamente em quatro grupos: SC, SC-T, HF e HF-T (n=10). O fármaco foi administrado (10mg/kg de dieta) durante 4 semanas para os grupos SC-T e HF-T.O grupo HF apresentou sobrepeso, hipertensão arterial sistêmica, perfil de adipocinas pró-inflamatórias, resistência insulínica, diminuição do gasto energético, comprometimento do metabolismo da glicose e distribuição anormal da massa adiposa. Além disso, a obesidade ocasionou diminuição da expressão de PPARalfa, beta/delta e gama noTAB e TAM, resultando na inadequação da captação de glicose e termogênese insuficiente. Por outro lado,a ativação das três isoformas de PPARs, a melhora do perfil inflamatório das adipocinas, o aumento da sensibilidade à insulina e a melhora da captação de glicose, foi vistaapós o tratamento com telmisartana. A ativação dos PPARs no TAB trouxe muitos benefícios. No TAM, resultados surpreendentes foram que a telmisartana provocou o aumento da expressão do recepetor adrenérgico beta 3 (RAβ3), induzido pela ativação de PPARbeta/delta e maior termogênese comaumento da expressão da proteína desacopladora1 (UCP1). Em conclusão, nossos resultados mostram que telmisartanaaumenta a expressão gênica e proteica PAN-PPAR no TAB e TAM em camundongos obesos induzidos por dieta. Nossas observações mostram que, apesar do grupo HF-T ter reduzido a ingestão energética, os efeitossão explicados pela ativação PAN-PPAR da telmisartana, causando a ativação da termogênese e resultando num balanço energético negativo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retinal vascular leakage, inflammation, and neovascularization (NV) are features of diabetic retinopathy (DR). Fenofibrate, a peroxisome proliferator-activated receptor a (PPARa) agonist, has shown robust protective effects against DR in type 2 diabetic patients, but its effects on DR in type 1 diabetes have not been reported. This study evaluated the efficacy of fenofibrate on DR in type 1 diabetes models and determined if the effect is PPARa dependent. Oral administration of fenofibrate significantly ameliorated retinal vascular leakage and leukostasis in streptozotocin-induced diabetic rats and in Akita mice. Favorable effects on DR were also achieved by intravitreal injection of fenofibrate or another specific PPARa agonist. Fenofibrate also ameliorated retinal NV in the oxygen-induced retinopathy (OIR) model and inhibited tube formation and migration in cultured endothelial cells. Fenofibrate also attenuated overexpression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and vascular endothelial growth factor (VEGF) and blocked activation of hypoxia-inducible factor-1 and nuclear factor-?B in the retinas of OIR and diabetic models. Fenofibrate's beneficial effects were blocked by a specific PPARa antagonist. Furthermore, Ppara knockout abolished the fenofibrate-induced downregulation of VEGF and reduction of retinal vascular leakage in DR models. These results demonstrate therapeutic effects of fenofibrate on DR in type 1 diabetes and support the existence of the drug target in ocular tissues and via a PPARa-dependent mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’arthrose (OA) est une maladie dégénérative très répondue touchant les articulations. Elle est caractérisée par la destruction progressive du cartilage articulaire, l’inflammation de la membrane synoviale et le remodelage de l’os sous chondral. L’étiologie de cette maladie n’est pas encore bien définie. Plusieurs études ont été menées pour élucider les mécanismes moléculaires et cellulaires impliqués dans le développement de l’OA. Les effets protecteurs du récepteur activé par les proliférateurs de peroxysomes gamma (PPARγ) dans l'OA sont bien documentés. Il a été démontré que PPARγ possède des propriétés anti-inflammatoires et anti-cataboliques. Aussi, plusieurs stimuli ont été impliqués dans la régulation de l’expression de PPARγ dans différents types cellulaires. Cependant, les mécanismes exacts responsables de cette régulation ainsi que le profil de l’expression de ce récepteur au cours de la progression de l’OA ne sont pas bien connus. Dans la première partie de nos travaux, nous avons essayé d’élucider les mécanismes impliqués dans l’altération de l’expression de PPARγ dans cette maladie. Nos résultats ont confirmé l’implication de l’interleukine-1β (IL-1β), une cytokine pro-inflammatoire, dans la réduction de l’expression de PPARγ au niveau des chondrocytes du cartilage articulaire. Cet effet coïncide avec l'induction de l’expression du facteur de transcription à réponse précoce de type 1 (Egr-1). En plus, la diminution de l'expression de PPARγ a été associée au recrutement d'Egr-1 et la réduction concomitante de la liaison de Sp1 au niveau du promoteur de PPARγ. Dans la deuxième partie de nos travaux, nous avons évalué le profil d’expression de ce récepteur dans le cartilage au cours de la progression de cette maladie. Le cochon d’inde avec OA spontanée et le chien avec OA induite par rupture du ligament croisé antérieur (ACLT) deux modèles animaux d’OA ont été utilisés pour suivre l’expression des trois isoformes de PPARs : PPAR alpha (α), PPAR béta (β) et PPAR gamma (γ) ainsi que la prostaglandine D synthase hématopoïétique (H-PGDS) et la prostaglandine D synthase de type lipocaline (L-PGDS) deux enzymes impliquées dans la production de l’agoniste naturel de PPARγ, la 15-Deoxy-delta(12,14)-prostaglandine J(2) (15d-PGJ2). Nos résultats ont démontré des changements dans l’expression de PPARγ et la L-PGDS. En revanche, l’expression de PPARα, PPARβ et H-PGDS est restée stable au fil du temps. La diminution de l’expression de PPARγ dans le cartilage articulaire semble contribuer au développement de l’OA dans les deux modèles animaux. En effet, le traitement des chondrocytes par de siRNA dirigé contre PPARγ a favorisé la production des médiateurs arthrosiques tels que l'oxyde nitrique (NO) et la métalloprotéase matricielle de type 13 (MMP-13), confirmant ainsi le rôle anti-arthrosique de ce récepteur. Contrairement à ce dernier, le niveau d'expression de la L-PGDS a augmenté au cours de la progression de cette maladie. La surexpression de la L-PGDS au niveau des chondrocytes humains a été associée à la diminution de la production de ces médiateurs arthrosiques, suggérant son implication dans un processus de tentative de réparation. En conclusion, l’ensemble de nos résultats suggèrent que la modulation du niveau d’expression de PPARγ, de la L-PGDS et d’Egr-1 au niveau du cartilage articulaire pourrait constituer une voie thérapeutique potentielle dans le traitement de l’OA et probablement d’autres formes d'arthrite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms &alpha;, β/δ, and γ control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-&alpha;, -β/δ, and -γ. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-&alpha;, -β/δ, and -γ mRNA as well as the fiber type distribution of the PGC-1 and PPAR-&alpha; proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-&alpha; mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-&alpha; was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-&alpha; levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examined the actions of 17β-estradiol (E2) and progesterone on the regulation of the peroxisome proliferator-activated receptors (PPAR&alpha; and PPARγ) family of nuclear transcription factors and the mRNA abundance of key enzymes involved in fat oxidation, in skeletal muscle. Specifically,
carnitine palmitoyltransferase I (CPT I), β-3-hydroxyacyl CoA dehydrogenase (β-HAD), and pyruvate dehydrogenase kinase 4 (PDK4) were examined. Sprague–Dawley rats were ovariectomized and treated with placebo (Ovx), E2, progesterone, or both hormones in combination (E+P). Additionally,
sham-operated rats were treated with placebo (Sham) to serve as controls. Hormone (or vehicle only) delivery was via time release pellets inserted at the time of surgery, 15 days prior to analysis. E2 treatment increased PPAR&alpha; mRNA expression and protein content (P<0·05), compared with Ovx treatment. E2 also resulted in upregulated mRNA of CPT I and PDK4 (P<0·05). PPARγ mRNA expression was also increased (P<0·05) by E2 treatment, although protein content remained unaltered. These data
demonstrate the novel regulation of E2 on PPAR&alpha; and genes encoding key proteins that are pivotal in regulating skeletal muscle lipid oxidative flux.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A human peroxisome proliferator-activated receptor alpha ligand binding domain (PPAR&alpha;LBD)-maltose binding protein fusion construct was expressed in Escherichia coli. A codon optimized DNA sequence encoding human PPAR&alpha;LBD (aa196–468) was synthesized and ligated into the pDEST17 E. coli expression vector downstream of a MBP solubility fusion tag and an intermittent TEV protease cleavage site. Following auto-induction at 28 °C, PPAR&alpha;LBD protein was purified to electrophoretic homogeneity by a nickel affinity chromatographic step, on-column TEV protease cleavage followed by Sephacryl S200 size exclusion chromatography. The recombinant protein displayed cross-reactivity with goat anti-(human PPAR&alpha;) polyclonal antibody and was identified as human PPAR&alpha; by trypic peptide mass finger-printing. The addition of a PPAR&alpha; specific ligand (fenofibric acid, GW7647 or GW590735) to the growth media significantly stabilized the PPAR&alpha;LBD structure and enhanced the expression of soluble protein. In-cell ligand binding was examined by monitoring the enhancement of PPAR&alpha;LBD expression as a function of the concentration of ligand in the growth media. The efficient expression and in-cell assay of the reported PPAR&alpha;LBD construct make it amenable to high through-put screening assays in drug discovery programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is known that fatty acids (FA) regulate lipid metabolism by modulating the expression of numerous genes. In order to gain a better understanding of the effect of individual FA on lipid metabolism related genes in rainbow trout (Oncorhynchus mykiss), an in vitro time-course study was implemented where twelve individual FA (butyric 4:0; caprylic 8:0; palmitic (PAM) 16:0; stearic (STA) 18:0; palmitoleic16:1n-7; oleic 18:1n-9; 11-cis-eicosenoic 20:1n-9; linoleic (LNA) 18:2n-6; &alpha;-linolenic (ALA) 18:3n-3; eicosapentenoic (EPA) 20:5n-3; docosahexaenoic (DHA) 22:6n-3; arachidonic (ARA) 20:4n-6) were incubated in rainbow trout liver slices. The effect of FA administration over time was evaluated on the expression of leptin, PPAR&alpha; and CPT-1 (lipid oxidative related genes). Leptin mRNA expression was down regulated by saturated fatty acids (SFA) and LNA, and was up regulated by monounsaturated fatty acids (MUFA) and long chain PUFA, whilst STA and ALA had no effect. PPAR&alpha; and CPT-1mRNA expression were up regulated by SFA, MUFA, ALA, ARA and DHA; and down regulated by LNA and EPA. These results suggest that there are individual and specific FA induced modifications of leptin, PPAR&alpha; and CPT-1 gene expression in rainbow trout, and it is envisaged that such results may provide highly valuable information for future practical applications in fish nutrition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15′-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9′10′-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1(r = 0.89; P<0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P< 0.001 and r = 0.62, P< 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver. © 2010 American Society for Nutrition.