921 resultados para POWER INDUSTRY
Resumo:
Wind power is one of the world's major renewable energy sources, and its utilization provides an important contribution in helping solve the energy problems of many countries. After nearly 40 years of development, China's wind power industry now not only manufactures its own massive six MW turbines but also has the largest capacity in the world with a national output of 50 million MW•h in 2010 and set to rise by eight times of that amount by 2020. This paper investigates this development route by analyzing relevant academic literature, statistics, laws and regulations, policies and research and industry reports. The main drivers of the development in the industry are identified as technologies, turbines, wind farm construction, pricing mechanism and government support systems, each of which is also divided into different stages with distinctive features. A systematic review of these aspects provides academics and practitioners with a better understanding of the history of the wind power industry in China and reasons for its rapid development with a view to enhancing progress in wind power development both in China and the world generally.
Resumo:
Includes bibliography
Resumo:
Big business in Russia: The pace of ownership transfer in the Russian economy has speeded up considerably over the last year. There has been a significant rise in the number of acquisitions of whole enterprises, and large blocks of shares in individual firms and plants. Similarly the number of mergers, bankruptcies and take-overs of failing firms by their strongest competitors has grown. The Russian power industry: This study is an overview of the current condition and principles on which the Russian power sector has been functioning so far. This analysis has been carried out against the background of the changes that have been taking place in the sector since the beginning of the 1990s. This text also contains a description of guidelines and progress made so far in implementing the reform of the Russian power industry, the draft of which was adopted by the government of the Russian Federation in summer 2001. However, the purpose of this study is not an economic analysis of the draft, but an attempt to present the political conditions and possible consequences of the transformations carried out in the Russian power sector. The final part attempts to evaluate the possibilities and threats related to the implementation of the reform in its present shape. Ukrainian metallurgy: The metallurgic sector, like the east-west transit of energy raw materials, is a strategic source of revenue for Ukraine. Over the last ten years, this sector has become Kiev's most important source of foreign currency inflows, accounting for over 40 per cent of its total export revenues. The growth of metallurgic production, which has continued almost without interruption since the mid-1990s, has contributed considerably to the increase in GDP which Ukraine showed in 2000, for the first time in its independent history.
Resumo:
Shipping list no.: 2001-0300-P.
Resumo:
"April 1983."
Resumo:
"Prepared for Office of Nuclear Power Systems, Assistant Secretary for Nuclear Energy, U.S. Department of Energy and the Institute of Nuclear Power Operations."
Resumo:
"July 11, 1996, September 9, 1996"--Pt. 2.
Resumo:
Shipping list no.: 2000-0115-P (pt. [1]), 2001-0034-P (pt. 2).
Resumo:
This paper investigates vertical economies between generation and distribution of electric power, and horizontal economies between different types of power generation in the U.S. electric utility industry. Our quadratic cost function model includes three generation output measures (hydro, nuclear and fossil fuels), which allows us to analyze the effect that generation mix has on vertical economies. Our results provide (sample mean) estimates of vertical economies of 8.1% and horizontal economies of 5.4%. An extensive sensitivity analysis is used to show how the scope measures vary across alternative model specifications and firm types. © 2012 Blackwell Publishing Ltd and the Editorial Board of The Journal of Industrial Economics.
Resumo:
This research employs econometric analysis on a cross section of American electricity companies in order to study the cost implications associated with unbundling the operations of integrated companies into vertically and/or horizontally separated companies. Focusing on the representative sample average firm, we find that complete horizontal and vertical disintegration resulting in the creation of separate nuclear, conventional, and hydro electric generation companies as well as a separate firm distributing power to final consumers, results in a statistically significant 13.5 percent increase in costs. Maintaining a horizontally integrated generator producing nuclear, conventional, and hydro electric generation while imposing vertical separation by creating a stand alone distribution company, results in a lower but still substantial and statistically significant cost penalty amounting to an 8.1 % increase in costs relative to a fully integrated structure. As these results imply that a vertically separated but horizontally integrated generation firm would need to reduce the costs of generation by 11% just to recoup the cost increases associated with vertical separation, even the costs associated with just vertical unbundling are quite substantial. Our paper is also the first academic paper we are aware of that systematically considers the impact of generation mix on vertical, horizontal, and overall scope economies. As a result, we are able to demonstrate that the estimated cost of unbundling in the electricity sector is substantially influenced by generation mix. Thus, for example, we find evidence of strong vertical integration economies between nuclear and conventional generation, but little evidence for vertical integration benefits between hydro generation and the distribution of power. In contrast, we find strong evidence suggesting the presence of substantial horizontal integration economies associated with the joint production of hydro generation with nuclear and/or conventional fossil fuel generation. These results are significant because they indicate that the cost of unbundling the electricity sector will differ substantially in different systems, meaning that a blanket regulatory policy with regard to the appropriateness of vertical and horizontal unbundling is likely to be inappropriate.