942 resultados para PORPHYRIN-FUNCTIONALIZED GRAPHENE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736568]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m(-1), which is 3-15 times that of polystyrene composites filled with single-walled carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oggigiorno la ricerca di nuovi materiali per gradatori di campo da impiegarsi in accessori di cavi ha iniziato a studiare alcuni materiali nano dielettrici con proprietà elettriche non lineari con la tensione ed aventi proprietà migliorate rispetto al materiale base. Per questo motivo in questo elaborato si sono studiati materiali nanostrutturati a base di polietilene a bassa densità (LDPE) contenenti nano polveri di grafene funzionalizzato (G*), ossido di grafene (GO) e carbon black (CB). Il primo obiettivo è stato quello di selezionare e ottimizzare i metodi di fabbricazione dei provini. La procedura di produzione è suddivisa in due parti. Nella prima parte è stata utilizzatala tecnica del ball-milling, mentre nella seconda un pressa termica (thermal pressing). Mediante la spettroscopia dielettrica a banda larga (BDS) si sono misurate le componenti reali e immaginarie della permettività e il modulo della conducibilità del materiale, in tensione alternata. Il miglioramento delle proprietà rispetto al provino di base composto dal solo polietilene si sono ottenute quando il quantitativo delle nanopolveri era maggiore. Le misure sono state effettuate sia a 3 V che a 1 kV. Attraverso misurazioni di termogravimetria (TGA) si è osservato l’aumento della resistenza termica di tutti i provini, soprattutto nel caso quando la % di nanopolveri è maggiore. Per i provini LDPE + 0.3 wt% GO e LDPE + 0.3 wt% G* si è misurata la resistenza alle scariche parziali attraverso la valutazione dell’erosione superficiale dei provini. Per il provino contenente G* è stato registrato una diminuzione del 22% del volume eroso, rispetto al materiale base, mentre per quello contenente GO non vi sono state variazioni significative. Infine si è ricercata la resistenza al breakdown di questi ultimi tre provini sopra citati. Per la caratterizzazione si è fatto uso della distribuzione di Weibull. Lo scale parameter α risulta aumentare solo per il provino LDPE + 0.3 wt% G*.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene sheets functionalized covalently with biocompatible poly-L-lysine (PLL) were first synthesized in all alkaline solution. PLL-functionalized graphene is water-soluble and biocompatible, which makes it a novel material promising for biological applications. Graphene sheets played an important role as connectors to assemble these active amino groups Of Poly-L-lysine, which provided a very biocompatible. environment for further functionalization, such as attaching bioactive molecules. As an example, an amplified biosensor toward H2O2 based on linking peroxidase onto PLL-functionalized graphene was investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA G, which is deduced from the current–voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Functionalized graphene is a versatile material that has well-known physical and chemical properties depending on functional groups and their coverage. However, selective control of functional groups on the nanoscale is hardly achievable by conventional methods utilizing chemical modifications. We demonstrate electrical control of nanoscale functionalization of graphene with the desired chemical coverage of a selective functional group by atomic force microscopy (AFM) lithography and their full recovery through moderate thermal treatments. Surprisingly, our controlled coverage of functional groups can reach 94.9% for oxygen and 49.0% for hydrogen, respectively, well beyond those achieved by conventional methods. This coverage is almost at the theoretical maximum, which is verified through scanning photoelectron microscope measurements as well as first-principles calculations. We believe that the present method is now ready to realize 'chemical pencil drawing' of atomically defined circuit devices on top of a monolayer of graphene. © 2014 Nature Publishing Group All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a facile method to create the chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. Great improvements in mechanical properties such as compressive failure strength and toughness have been achieved for the chemically converted graphene oxide/epoxy resin for a 0.0375 wt% loading of chemically converted graphene oxide sheets in epoxy resin by 48.3% and 1185.2%, respectively. In addition, the loading of graphene is also conveniently tunable even to 0.15 wt% just by increasing the volume of the graphene oxide dispersion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemically converted graphene (CCG)/3,4,9,10-perylene tetracarboxylic acid (PTCA)/Au-ionic liquid (Au-IL) composites (CCG/PTCA/Au-IL) have been prepared by a chemical route that involves functionalization of CCG with PTCA followed by deposition of Au-IL. Transmission electron microscopy revealed well-distributed Au with a high surface coverage. The identity of the hybrid material was confirmed through X-ray diffraction and X-ray photoelectron spectroscopy. The CCG/PTCA/Au-IL composites exhibited good electrocatalytic behavior toward oxygen reduction. The results indicate that modification of CCG with Au-IL could play an important role in increasing the electrocatalytic activity of CCG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First-principles computational studies indicate that (B, N, or O)-doped graphene ribbon edges can substantially reduce the energy barrier for H2 dissociative adsorption. The low barrier is competitive with many widely used metal or metal oxide catalysts. This suggests that suitably functionalized graphene architectures are promising metal-free alternatives for low-cost catalytic processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the non-enzymatic electronic detection of glucose using field effect transistor (FET) devices made of aminophenylboronic acid (APBA) functionalized reduced graphene oxide (RGO). Detection of glucose molecules was carried out over a wide dynamic range of concentration varying from 100 pM to 100 mM with a detection limit of similar to 2 nM using both covalently and non-covalently functionalized APBA-RGO complex. The normalized change in electrical conductance data shows that the FET devices made of non-covalently functionalized APBA-RGO complex (nc-APBA-RGO) exhibited a linear response to glucose aqueous solution of concentrations varying from 1 nM to 10 mM and showed 4 times enhanced sensitivity over the devices made of covalently functionalized APBA-RGO complex (c-APBA-RGO). Specificity of APBA-RGO complex to glucose is confirmed from the observation of negligible change in electrical conductance after exposure to 0.1 mM of lactose and other interfering factors. (C) 2015 Elsevier B.V. All rights reserved.