880 resultados para POLYSTYRENE-BLOCK-POLY(ETHYLENE OXIDE) MICELLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene oxide) has been coupled to poly(3-hexylthiophene) using esterification to produce pure diblock copolymers, highly relevant for use in organic electronic devices. The new synthetic route described herein uses a metal-free coupling step, for the first time, to afford well-defined polymers in high yields following facile purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase diagram of a series of poly(1,2-octylene oxide)-poly(ethylene oxide) (POO-PEO) diblock copolymers is determined by small-angle X-ray scattering. The Flory-Huggins interaction parameter was measured by small-angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non-lamellar phases (hexagonal and gyroid) are observed near f(PEO) = 0.5, and the lamellar phase is observed for f(PEO) >= 0.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of poly(ethylene oxide)-tetrapeptide conjugates have been prepared using a “Click” reaction between an alkyne-modified tetra(phenylalanine) or tetra(valine) and various azide-terminated poly(ethylene oxide) (PEO) oligomers. Three different PEO precursors were used to prepare these conjugates, with number-average molecular weights of 350, 1200, and 1800 Da. Assembly of mPEO-F4-OEt and mPEO-V4-OEt conjugates was achieved by dialysis of a THF solution of the conjugate against water or by direct aqueous rehydration of a thin film. The PEO length has a profound effect on the outcome of the self-assembly, with the F4 conjugates giving rise to nanotubes, fibers, and wormlike micelles, respectively, as the length of the PEO block is increased. For the V4 series, the propensity to form ß-sheets dominates, and hence, the self-assembled structures are reminiscent of those formed by peptides alone, even at the longer PEO lengths. Thus, this systematic study demonstrates that the self-assembly of PEO-peptides depends on both the nature of the peptides and the relative PEO block length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing poly(ethylene oxide) surfactant to aluminum hydrate colloids can effectively direct the crystal growth of boehmite and the crystal morphology of final gamma-alumina crystallites. Fibrous crystallites of gamma-alumina about 3-4 nm thick and 30-60 nm long are obtained. They stack randomly, resulting in a structure with a low contact area between the fibers but with a very large porosity. Such a structure exhibits strong resistance to sintering when heated to high temperatures. A sample retains a BET surface area of 68 m(2)/g, after being heated to 1473 K. The surfactant molecules form micelles that interact with the colloid particles of aluminum hydroxide through hydrogen bonding. This interaction is not sufficient to change the intrinsic crystal structure of boehmite, but induces profound changes in the morphology of boehmite crystallites and their growth. The surfactant-induced fiber formation (SIFF) process has distinct features from templated synthesis but shows similarities in some respects to biomineralization processes in which inorganic crystals with complex morphological shapes can be formed in biological systems. SIFF offers an effective approach to create new nanostructures of inorganic oxide from aqueous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between the nonionic surfactant C(12)E(5) and a high molar mass (M = 5.94 x 10(5)) poly(ethylene oxide) (PEG) in aqueous solution has been examined as a function of temperature by dynamic light scattering and fluorescence methods over a broad concentration range. Clusters of small surfactant micelles form within the PEO coil, leading to its extension. The hydrodynamic radius of the complex increases strongly with temperature as well as with the concentrations of surfactant and polymer. At high concentrations of the surfactant, the coil/micellar cluster complex coexists with free C(12)E(5) micelles in the solution. Fluorescence quenching measurements show a moderate micellar growth from 155 to 203 monomers in PEO-free solutions of C(12)E(5) over a wide concentration range (0.02-2.5%) at 8 degrees C. Below 0.25% C(12)E(5), the average aggregation number (N) of the micelles is smaller in the presence of PEO than in its absence. However, N increases with increasing surfactant concentration up to a plateau value of about 270 at about 1.2% (ca. 30 mM) C(12)E(5). At high surfactant concentrations, N is larger in the presence of polymer than in its absence, a finding which is connected to a significant lowering of the clouding temperature due to the PEO at these compositions. Similar results of increasing aggregation number followed by a plateau were also found at a fixed concentration of surfactant (2.5%) and varied PEO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic light scattering has been used to investigate ternary aqueous solutions of n-dodecyl octaoxyethylene glycol monoetber (C12E8) with high molar mass poly(ethylene oxide) (PEO). The measurements were made at 20 °C, always below the cloud point temperature (Tc) of the mixed solutions. The relaxation time distributions are bimodal at higher PEO and surfactant concentrations, owing to the preacute of free surfactant micelles, which coexist with the slower component, representing the polymer coil/micellar cluster comptex. As the surfactant concentration is increased, the apparent hydrodynamic radius (RH) of the coil becomes progressively larger. It is suggested that the complex structure consists of clusters of micelles sited within the polymer coil, as previously concluded for the PEO-C12E8-water system. However. C12E8 interacts less strongly than C12E8 with PEO; at low concentrations of surfactant the complex does not contribute significantly to the total scattered intensity. The perturbation of the PEO coil radius with C12E8 is also smaller than that in the C12E8 system. The addition of PEO strongly decreases the clouding temperature of the system, as previously observed for C12E8/PEO mixtures in solution Addition of PEO up to 0.2% to C12E8 (10 wt %) solutions doss not alter the aggregation number (Nagg) of the micelles probably because the surfactant monomers are equally partitioned as bound and unbound micelles. The critical micelle concentration (cmc), obtained from the I1/I3 ratio (a measure of the dependence of the vibronic band intensities on the pyrene probe environment), does not change when PEO is added, suggesting that for neutral polymer/surfactant systems the trends in Nagg and the cmc do not unambiguously reflect the strength of interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic nanocomposites combine unique properties of both the constituents in one material. Among this group of materials, clay based as well as ZnO, TiO2 nanocomposites have been found to have diverse applications. Optoelectronic devices require polymerinorganic systems to meet certain desired properties. Dielectric properties of conventional polymers like poly(ethylene-co-vinyl acetate) (EVA) and polystyrene (PS) may also be tailor tuned with the incorporation of inorganic fillers in very small amounts. Electrical conductivity and surface resistivity of polymer matrices are found to improve with inorganic nanofillers. II-VI semiconductors and their nano materials have attracted material scientists because of their unique optical properties of photoluminescence, UV photodetection and light induced conductivity. Cadmium selenide (CdSe), zinc selenide (ZnSe) and zinc oxide (ZnO) are some of the most promising members of the IIVI semiconductor family, used in light-emitting diodes, nanosensors, non-linear optical (NLO) absorption etc. EVA and PS materials were selected as the matrices in the present study because they are commercially used polymers and have not been the subject of research for opto-electronic properties with semiconductor nanomaterials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to electrochromics, based on the reversible coating-dissolution of an oxide from an inorganic electrochromic electrolyte consisting of a silver-amine complex in a polymer electrolyte (PEO), has proven successful. The reversible electrodeposition of silver onto indium-tin oxide coated glass (ITO) was investigated and the influence of HClO(4) and KI was evaluated. Several characteristics of the electrolyte Ag-PEO make it suitable for use in electrochromic reversible silver electrodeposition devices, such as visible absorption spectrum with an absorbance variation of 60%, an electrochromic efficiency of 5.2 cm(2) C(-1) and an ionic conductivity 4.4 x 10(-4) S cm(-1). The addition of perchloric acid improved the transparency of Ag-PEO, and potassium iodide (KI) was fundamental in setting up the process of reversible silver electrodeposition in the PEO polymeric matrix. A description of the electrochemical processes implied is presented. A number of approaches focusing on the improvement of system performance are tested. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer blends based on poly(vinylidene fluoride), PVDF and poly(ethylene oxide), PEO, with varying compositions have been prepared by solvent casting, the polymer blend films being obtained from solutions in dimethyl formamide at 70ºC. Under these conditions PVDF crystallizes from solution while PEO remains in the molten state. Then, PEO crystallizes from the melt confined by PVDF crystalls during cooling to room temperature. PVDF crystallized from DMF solutions adopt predominantly the electroactive β-phase (85%). Nevertheless when PEO is introduced in the polymer blend the β-phase content decreases slightly to 70%. The piezoelectric coefficient (d33) in pristine PVDF is -5 pC/N and decreases with increasing PEO content in the PVDF/PEO blends. Blend morphology, observed by electron and atomic force microscopy, shows the confinement of PEO between the already formed PVDF crystals. On the other hand the sample contraction when PEO is extracted from the blend with water (which is not a solvent for PVDF) allows proving the co-continuity of both phases in the blend. PEO crystallization kinetics have been characterized by DSC both in isothermal and cooling scans experiments showing important differences in crystalline fraction and crystallization rate with sample composition.