88 resultados para POLYPYRROLE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an investigation of the electrical and electrochemical properties responsible for the energy storage capability of nanocomposites has been carried out. We demonstrate that, in the case of the V2O5 xerogel and the nanocomposites polypyrrole (Ppy)/V2O5 and polyaniline (PANI)/V2O5, the quadratic logistic equation (QLE) can be used to fit the inverse of the resistance values as a function of the injected charge in non-steady-state conditions. This contributes to a phenomenological understanding of the lithium ion and electron transport. The departure of the experimental curve from the fitting observed for the V2O5 xerogel can be attributed to the trapping sites formed during the lithium electroinsertion, which was observed by electrochemical impedance spectroscopy. The amount of trapping sites was obtained on the basis of the QLE. Similar values used to fit the inverse of the resistance were also used to fit the absorbance changes, which is also associated with the small polaron hopping from the V(IV) to the V(V) sites. On the other hand, there was good agreement between the experimental and the theoretical data when the profile of the inverse of the resistance as a function of the amount of inserted lithium ions of the nanocomposites Ppy/V2O5 and PANI/ V2O5 was concerned. We suggest that the presence of the conducting polymers is responsible for the different electrical profile of the V2O5 xerogel compared with those of the nanocomposites. In the latter case, interactions between the lithium ions and oxygen atoms from V2O5 are shielded, thus decreasing the trapping effect of lithium ions in the V2O5 sites. The different values of the lithium ion diffusion coefficient into these intercalation materials are in agreement with this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive, selective, and reproducible in-tube polypyrrole-coated capillary (PPY) solid-phase microextraction and liquid chromatographic method for fluoxetine and norfluoxetine enantiomers analysis in plasma samples has been developed, validated, and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. Separation of the analytes was achieved with a Chiralcel OD-R column and a mobile phase consisting of potassium hexafluorophosphate 7.5 mM and sodium phosphate 0.25 M solution, pH 3.0, and acetonitrile (75:25, v/v) in the isocratic mode, at a flow rate of 1.0 mL/min. Detection was carried out by fluorescence absorbance at Ex/Em 230/290 nm. The multifunctional porous surface structure of the PPY-coated film provided high precision and accuracy for enantiomers. Compared with other commercial capillaries, PPY-coated capillary showed better extraction efficiency for all the analytes. The quantification limits of the proposed method were 10 ng/mL for R- and S-fluoxetine, and 15 ng/mL for R- and S-norfluoxetine, with a coefficient of variation lower than 13%. The response of the method for enantiomers is linear over a dynamic range, from the limit of quantification to 700ng/mL, with correlation coefficients higher than 0.9940. The in-tube SPME/LC method can therefore be successfully used to analyze plasma samples from ageing patients undergoing therapy with fluoxetine. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-toluensulfonate doped polypyrrole ~PPy!, undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-toluensulfonate doped polypyrrole (PPy), undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large scale preparation of hybrid electrical actuators represents an important step for the production of low cost devices. Interfacial polymerization of polypyrrole in the presence of multi-walled carbon nanotubes represents a simple technique in which strong interaction between components is established, providing composite materials with potential applications as actuators due to the synergistic interaction between the individual components, i.e., fast response of carbon nanotubes, high strain of polypyrrole, and diversity in the available geometry of resulting samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole/poly (vinyl chloride) semi-interpenenzrtirtg networks of different compositions are prepared using anunonitun per sulfate initiator at room temperature in pellet.form and lilrrt form and their dielectric properties are studied at different microwave frequencies. An HP 8510 Vector network analyzer interfaced with a computer is used. The cavity-perturbation technique is employed for the study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work deals with investigations on some technologically important polymer nanocomposite films and semi crystalline polypyrrole films.The work presented in the thesis deals with the realization of novel polymer nanocomposites with enhanced functionalities and prospects of applications in the fields related to nanophotonics. The development of inorganic/polymer nanocomposites is a rapidly expanding multidisciplinary research area with profound industrial applications. The incorporation of suitable inorganic nanoparticles can endow the resulting nanocomposites with excellent electrical, optical and mechanical properties. The first chapter gives a general introduction to nanotechnology, nanocomposites and conducting polymers. It also emphasizes the significance of ZnO among other semiconductor materials, which forms the inorganic filler in the polymer nanocomposites of the present study. This chapter also gives general ideas on the properties and applications of conducting polymers with special reference to polypyrrole. The objectives of the present investigations are also clearly addressed in this chapter. The second chapter deals with the theoretical aspects and details of all the experimental techniques used in the present work for the synthesis of polymer nanocomposites and polypyrrole samples and their various characterizations. Chapter 3 is based on the preparation and properties of ZnO/Polystyrene nanocomposite film samples. The optical properties of these nanocomoposite films are discussed in detail.Chapter 4 deals with the detailed investigations on the dependence of the optical properties of ZnO/PS nanocomposite films on the size of the nanostructured ZnO filler material. The excellent UV shielding properties of these nanocomposite films form the highlight of this chapter. Chapter 5 gives a detailed analysis of the nonlinear optical properties of ZnO/PS nanocomposite films using Z scan technique. The effect of ZnO particle size in the composite films on the nonlinear properties is discussed. The present study involves two phases of research activities. In the first phase, the linear and nonlinear optical properties of ZnO/polymer nanocomposites are investigated in detail. The second phase of work is centered on the synthesis and related studies on highly crystalline polypyrrole films. In the present study, nanosized ZnO is synthesized using wet chemical method at two different temperatures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-toluensulfonate doped polypyrrole (PPy), undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electrochemical preparation of electrically conducting films based on polypyrrole, using 10-camphorsulfonate as the dopant, which exhibit a highly anisotropic molecular organisation. This contrasts with earlier reports, in which anisotropy appeared to be restricted to films prepared using aromatic-based planar dopants. Possible growth mechanisms for these materials to account for the molecular anisotropy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray scattering curves have been measured for a range of electrochemically-prepared conducting polypyrrole films employing a variety of counterions in aqueous solutions. Films containing counterions based on aromatic rings exhibit an anisotropic molecular organization. The degree of anisotropy is enhanced through the use of highly planar counterions. The electrical conductivity of such films is also improved if the charge/volume ratio of the counterion is maintained at a high level. Polypyrrole films prepared using ‘spherically’ shaped counterions such as SO42− do not display such anisotropic molecular organizations, and exhibit lower electrical conductivities. The competing structural roles of the counterions within these molecular composites are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical properties of conducting polymers make them useful materials in a wide number of technological applications. In the last decade, an important effect on the properties of the conducting polymer when iron oxides particles are incorporated into the conductive matrix was shown. In the present study, films of polypyrrole were synthesized in the presence of magnetite particles. The effect of the magnetite particles on the structure of the polymer matrix was determined using Raman spectroscopy. Mass variations at different concentrations of Fe(3)O(4) incorporated into the conducting matrix were also measured by means of quartz crystal microbalance. Additionally, the changes in the resistance of the films were evaluated over time by electrochemical impedance spectroscopy in solid state. These results show that the magnetite incorporation decreases polymeric film resistance and Raman experiments have evidenced that the incorporation of magnetite into polymeric matrix not only stabilizes the polaronic form of the polypyrrole, but also preserves the polymer from further oxidation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new polymeric coating consisting of a dual-phase, polydimethylsiloxane (PDMS) and polypyrrole (PPY) was developed for the stir bar sorptive extraction (SBSE) of antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine and sertraline) from plasma samples, followed by liquid chromatography analysis (SBSE/LC-UV). The extractions were based on both adsorption (PPY) and sorption (PDMS) mechanisms. SBSE variables, such as extraction time, temperature, pH of the matrix, and desorption time were optimized, in order to achieve suitable analytical sensitivity in a short time period. The PDMS/PPY coated stir bar showed high extraction efficiency (sensitivity and selectivity) toward the target analytes. The quantification limits (LOQ) of the SBSE/LC-UV method ranged from 20 ng mL(-1) to 50 ng mL(-1), and the linear range was from LOQ to 500 ng mL(-1), with a determination coefficient higher than 0.99. The inter-day precision of the SBSE/LC-UV method presented a variation coefficient lower than 15%. The efficiency of the SBSE/LC-UV method was proved by analysis of plasma samples from elderly depressed patients. (C) 2008 Elsevier B.V. All rights reserved.