970 resultados para POLYMER-MODIFIED CEMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations concentrated on the styrene butadiene rubber (SBR) latex and formulations included standard carboxylated and special carboxylated latexes. The aqueous component, containing the stabilisers and antifoaming agent but not the polymer solids, was also used. For comparison, limited investigations were carried out using other polymer types e.g. acrylic, ethylene-vinyl acetate (EVA), and redispersible powders rather than emulsions. The major findings were: 1) All latex systems investigated acted as retarders for cement hydration. The extent of retardation depends on the type of polymer. The mechanism for cement hydration may be changed, and excessive retardation influences properties. 2) Polymer modified cements exhibited either similar or coarser pore structures compared with unmodified cements. Results suggest that polymer mainly exists in a mixture of cement hydrates and polymer phase. Very little evidence was found for the formation of a distinct polymer film phase. 3) During the first few days of curing the polymer solids are removed from the pore solution and concentrations of OH-, Na+ and K+ are reduced. These observations are probably a result of polymer-cement surface interactions since there was no evidence of any chemical reactions or degradation of the polymer. 4) Improved diffusional resistance of modified cements depends on the ability to achieve adequate workability at low w/c ratio, rather than modification of matrix structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer modified cements and mortars have become popular for use as patch repair materials. General evidence suggests that these materials offer considerable improvements compared to traditional mortars although the mechanisms for this are not fully understood. This work elucidates the factors which govern some properties and performance of different polymer systems. In view of the wide range of commercial systems available, investigations concentrated on the use of three of the most commonly available groups of polymers. These were: (1) Styrene Butadiene Rubber (SBR), (2) Acrylics and, (3) Ethylene Vinyl Acetates (EVA). The later two were in the form of both emulsions and redispersible powders. Experiments concentrated on: (1) Rheological behaviour of polymer modified cement pastes; (2) Workability of polymer modified mortars; (3) Influence of curing conditions on the pore size distribution and diffusion of chloride ions; (4) Bond strength of polymer modified cement and mortar patches; and (5) Microscopic examination and semi-quantitative analyses of the bulk and interfacial microstructures. The following main conclusions were reached: (1) The addition of polymer emulsions have a considerable influence on the workability of fresh cement pastes, the extent of this depending on the type of system used. (2) The rheological parameters of fresh polymer modified mortars can be established using a two-point workability test which may be used when comparing the properties of different systems at constant workability. (3) Curing conditions affect the properties of polymer modified systems and a wet/dry curing regime was essential for good adhesion of these materials to mortar substrates. (4) In contrast, the wet/dry curing regime resulted in a curing affected zone at the surface of patch materials. This can result in a much coarser pore structure and enhanced diffusion of e.g. chloride ions. (5) The microstructure of polymer modified systems was very different compared with the unmodified cement/mortar and varied depending on curing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in the field of polymer modified cement has been carried out for the last 70 years or more. Polymers are mostly used to enhance durability and sustainability of cement concrete and in combination with classical construction materials a synergistic effect is obtained. In this work different polymers were added to Portland cement in various proportions and the mechanical and chemical resistance properties of the resultant composites when exposed to chemical environments were studied. Microstructural studies were also carried out to investigate the morphology of the composite and analyse the nature of interactions taking place between the cement and polymer phases. Though most polymers did not improve the compressive strength of the cement paste, it was found that they enhanced the resistance of the virgin cement paste to external chemical environments. The polymers seal the pores in the cement matrix and bridge the microcracks within the composite. Some of the polymers underwent chemical interactions with the cement paste thereby interfering in the hydration of cement. Polymers also decreased the leachability of water soluble components of virgin cement resulting in composites having improved durability. An attempt to correlate the structure of the polymers with the properties of the resultant composites is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Donor-acceptor-donor-structured thiophene derivative-based conducting polymer poly(7,9-dithiophene-2yl-8H-cyclopentaa]acenaphthalene-8-one) was chemically synthesized. This polymer was used to modify both glassy-carbon and carbon-paste electrode, which was used to detect lead(II) ions present in water in the range of 1 mM to 0.1 mu M. Cyclic voltammetry confirms the formation of the co-ordination complex between the soft segment of polymer and the dissolved lead ion. Anodic stripping voltammetry was carried out by the modified electrode to determine the lower limit of detection of dissolved lead(II) species in the solution. Differential adsorptive stripping and impedance measurements were also conducted to find the lowest possible response of the as-synthesized polymer to lead(II) ion in water. The electrochemical performance of the modified electrodes at different pH (4, 7 and 9) environments was carried out by stripping voltammetry, to get optimum sensitivity and stability under these conditions. Finally, interference analysis was carried out to detect the modified electrode's sensitivity towards lead ion affinity in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of DNA is a very important task for molecular biology and biomedical field. We have investigated electrochemical behavior of double-stranded DNA and single-stranded DNA adsorbed on conducting polymer modified electrode in presence of cobalt complex. The possibility of using such electrode as gene detector is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron-5,10,15,20-tetraphenylporphyrin (FeTPP) has been incorporated into films of a coordinating hydrogel polymer support medium, poly(gamma-ethyl-L-glutamate) (PEG) functionalised with imidazole pendant arms (PEG-Im), and studied in situ on silver electrodes using a combination of both resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectroscopy. The SERR spectra give information on the portion of the film close to the electrode surface while RR spectra probe the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nitric oxide biosensor based on cytochrome c (an heme protein) covalently immobilized to poly(5-amino-1-naphthol) by using cyanuric chloride as a bridge was developed. The immobilization was studied by cyclic voltammetry and quartz crystal microbalance. The nitric oxide detection as a function of poly(5-amino-1-naphthol) amount was recorded, and the best result was obtained with the electrode prepared by 70 cycles. The sensitivity and detection limit were 0.015 mu A cm(-2)/mu mol L(-1) and 2.85 mu mol L(-1), respectively. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

atomic force microscopy (AFM); atom transfer radical polymerization (ATRP); block copolymers; self-assembly; silica nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the effect of silica fume and styrene-butadiene latex (SBR) on the microstructure of the interfacial transition zone (ITZ) between Portland cement paste and aggregates (basalt). Scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis system (EDX) was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 mu m) was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35-40 mu m). However, better results were observed in concretes with silica fume and latex SBR (20-25 mu m). (C) 2008 Elsevier Ltd. All rights reserved.