798 resultados para POLYMER PARTICLES
Resumo:
The grafting of functional brushes on the surface of molecularly imprinted polymer (MIP). particles hás been explored in the last few years to synthesize materiais combining high molecular recognition capabilities and stimulation triggered by changes in the surrounding environment [1, 2]. In the present work, MIP particles for 5-fluorouracil (a drug used in câncer treatment) were produced by precipitation polymerization in acetonitrile, using either MAA or HEMA as imprinting fünctional monomers, and m the presence of different kinds of RAFT agents. In a second step, taking advantage of the RAFT groups present in the surface of the particles, different kinds of fiinctional polymer brushes were grafted on the MIPs considering a "grafting from" process in the presence of a RAFT agent.
Resumo:
In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on ""smart"" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.
Resumo:
Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.
Resumo:
In der vorliegenden Arbeit wurden Miniemulsionen als räumliche Begrenzungen für die Synthese von unterschiedlichen funktionellen Materialien mit neuartigen Eigenschaften verwendet. Das erste Themengebiet umfasst die Herstellung von Polymer/Calciumphosphat-Hybridpartikeln und –Hybridkapseln über die templatgesteuerte Mineralisation von Calciumphosphat. Die funktionalisierte Oberfläche von Polymernanopartikeln, welche über die Miniemulsionspolymerisation hergestellt wurden, diente als Templat für die Kristallisation von Calciumphosphat auf den Partikeln. Der Einfluss der funktionellen Carboxylat- und Phosphonat-Oberflächengruppen auf die Komplexierung von Calcium-Ionen sowie die Mineralisation von Calciumphosphat auf der Oberfläche der Nanopartikel wurde mit mehreren Methoden (ionenselektive Elektroden, REM, TEM und XRD) detailliert analysiert. Es wurde herausgefunden, dass die Mineralisation bei verschiedenen pH-Werten zu vollkommen unterschiedlichen Kristallmorphologien (nadel- und plättchenförmige Kristalle) auf der Oberfläche der Partikel führt. Untersuchungen der Mineralisationskinetik zeigten, dass die Morphologie der Hydroxylapatit-Kristalle auf der Partikeloberfläche mit der Änderung der Kristallisationsgeschwindigkeit durch eine sorgfältige Wahl des pH-Wertes gezielt kontrolliert werden kann. Sowohl die Eigenschaften der als Templat verwendeten Polymernanopartikel (z. B. Größe, Form und Funktionalisierung), als auch die Oberflächentopografie der entstandenen Polymer/Calciumphosphat-Hybridpartikel wurden gezielt verändert, um die Eigenschaften der erhaltenen Kompositmaterialien zu steuern. rnEine ähnliche bio-inspirierte Methode wurde zur in situ-Herstellung von organisch/anorganischen Nanokapseln entwickelt. Hierbei wurde die flexible Grenzfläche von flüssigen Miniemulsionströpfchen zur Mineralisation von Calciumphosphat an der Grenzfläche eingesetzt, um Gelatine/Calciumphosphat-Hybridkapseln mit flüssigem Kern herzustellen. Der flüssige Kern der Nanokapseln ermöglicht dabei die Verkapselung unterschiedlicher hydrophiler Substanzen, was in dieser Arbeit durch die erfolgreiche Verkapselung sehr kleiner Hydroxylapatit-Kristalle sowie eines Fluoreszenzfarbstoffes (Rhodamin 6G) demonstriert wurde. Aufgrund der intrinsischen Eigenschaften der Gelatine/Calciumphosphat-Kapseln konnten abhängig vom pH-Wert der Umgebung unterschiedliche Mengen des verkapselten Fluoreszenzfarbstoffes aus den Kapseln freigesetzt werden. Eine mögliche Anwendung der Polymer/Calciumphosphat-Partikel und –Kapseln ist die Implantatbeschichtung, wobei diese als Bindeglied zwischen künstlichem Implantat und natürlichem Knochengewebe dienen. rnIm zweiten Themengebiet dieser Arbeit wurde die Grenzfläche von Nanometer-großen Miniemulsionströpfchen eingesetzt, um einzelne in der dispersen Phase gelöste Polymerketten zu separieren. Nach der Verdampfung des in den Tröpfchen vorhandenen Lösungsmittels wurden stabile Dispersionen sehr kleiner Polymer-Nanopartikel (<10 nm Durchmesser) erhalten, die aus nur wenigen oder einer einzigen Polymerkette bestehen. Die kolloidale Stabilität der Partikel nach der Synthese, gewährleistet durch die Anwesenheit von SDS in der wässrigen Phase der Dispersionen, ist vorteilhaft für die anschließende Charakterisierung der Polymer-Nanopartikel. Die Partikelgröße der Nanopartikel wurde mittels DLS und TEM bestimmt und mit Hilfe der Dichte und des Molekulargewichts der verwendeten Polymere die Anzahl an Polymerketten pro Partikel bestimmt. Wie es für Partikel, die aus nur einer Polymerkette bestehen, erwartet wird, stieg die mittels DLS bestimmte Partikelgröße mit steigendem Molekulargewicht des in der Synthese der Partikel eingesetzten Polymers deutlich an. Die Quantifizierung der Kettenzahl pro Partikel mit Hilfe von Fluoreszenzanisotropie-Messungen ergab, dass Polymer-Einzelkettenpartikel hoher Einheitlichkeit hergestellt wurden. Durch die Verwendung eines Hochdruckhomogenisators zur Herstellung der Einzelkettendispersionen war es möglich, größere Mengen der Einzelkettenpartikel herzustellen, deren Materialeigenschaften zurzeit näher untersucht werden.rn
Resumo:
Porous polymer particles are used in an extraordinarily wide range of advanced and everyday applications, from combinatorial chemistry, solid-phase organic synthesis and polymer-supported reagents, to environmental analyses and the purification of drinking water. The installation and exploitation of functional chemical handles on the particles is often a prerequisite for their successful exploitation, irrespective of the application and the porous nature of the particles. New methodology for the chemical modification of macroreticular polymers is the primary focus of the work presented in this thesis. Porous polymer microspheres decorated with a diverse range of functional groups were synthesised by the post-polymerisation chemical modification of beaded polymers via olefin cross metathesis. The polymer microspheres were prepared by the precipitation polymerisation of divinylbenzene in porogenic (pore-forming) solvents; the olefin cross-metathesis (CM) functionalisation reactions exploited the pendent (polymer-bound) vinyl groups that were not consumed by polymerisation. Olefin CM reactions involving the pendent vinyl groups were performed in dichloromethane using second-generation Grubbs catalyst (Grubbs II), and a wide range of coupling partners used. The results obtained indicate that high quality, porous polymer microspheres synthesised by precipitation polymerisation in near-θ solvents can be functionalised by olefin CM under very mild conditions to install a diverse range of chemical functionalities into a common polydivinylbenzene precursor. Gel-type polymer microspheres were prepared by the precipitation copolymerisation reaction of divinylbenzene and allyl methacrylate in neat acetonitrile. The unreacted pendent vinyl groups that were not consumed by polymerisation were subjected to internal and external olefin metathesis-based hypercrosslinking reactions. Internal hypercrosslinking was carried out by using ring-closing metathesis (RCM) reactions in toluene using Grubbs II catalyst. Under these conditions, hypercrosslinked (HXL) polymers with specific surface areas around 500 m2g-1 were synthesised. External hypercrosslinking was attempted by using CM/RCM in the presence of a multivinyl coupling partner in toluene using second-generation Hoveyda-Grubbs catalyst. The results obtained indicate that no HXL polymers were obtained. However, during the development of this methodology, a new type of polymerisation was discovered with tetraallylorthosilicate as monomer.
Resumo:
In the present work, the sensitivity of NIR spectroscopy toward the evolution of particle size was studied during emulsion homopolymerization of styrene (Sty) and emulsion copolymerization of vinyl acetate-butyl acrylate conducted in a semibatch stirred tank and a tubular pulsed sieve plate reactor, respectively. All NIR spectra were collected online with a transflectance probe immersed into the reaction medium. The spectral range used for the NIR monitoring was from 9 500 to 13 000 cm(-1), where the absorbance of the chemical components present is minimal and the changes in the NIR spectrum can be ascribed to the effects of light scattering by the polymer particles. Off-line measurements of the average diameter of the polymer particles by DLS were used as reference values for the development of the multi-variate NIR calibration models based on partial least squares. Results indicated that, in the spectral range studied, it is possible to monitor the evolution of the average size of the polymer particles during emulsion polymerization reactions. The inclusion of an additional spectral range, from 5 701 to 6 447 cm(-1), containing information on absorbances (""chemical information"") in the calibration models was also evaluated.
Resumo:
A new conglomerate family sample of 194 dwellings with 996 resident persons were studied in the town of Barcelos, State of Amazonas, in order to re-evaluate the risk of Chagas disease. During the survey the persons were interviewed and in this occasion we showed to them a collection of Panstrongylus, Rhodnius and Triatoma, asking if they recognized and eventually have been bitten by this kind of bugs. At this time we collected 500 ul of blood in microtainer® tubes from 886 interviewed persons who gave permission after informed consent. A screening test for T. cruzi antibodies based on agglutination of colored polymer particles, sensitized with three different synthetic peptides of T. cruzi (ID-PaGIA Chagas Test)®, showed 13.2% of sera positivity, but only 6.8% were confirmed by indirect immunofluorescence, and ELISA with purified T. cruzi antigens. Two hundred and six interviewed persons (20.7%) recognized the triatomines, as "piaçavas' lice" and 62 (30%) confirmed that have been bitten by the bugs, 25.8% of them had a positive serology for T. cruzi infection. Electrocardiographic alterations were shown in 9.3% of the seropositives and in 11.9% of the seronegative cases. This was considered not statistically significant.
Resumo:
Durante as últimas décadas, os materiais compósitos têm substituído com sucesso os materiais tradicionais em muitas aplicações de engenharia, muito devido às excelentes propriedades que se conseguem obter com a combinação de materiais diferentes. Nos compósitos reforçados com fibras longas ou contínuas tem-se verificado, ao longo dos últimos anos, um aumento do uso de matrizes termoplásticas, fruto de várias vantagens associadas, como o facto de serem bastante mais ecológicas, comparativamente às termoendurecíveis. No entanto, este aumento está muito dependente do desenvolvimento de novas tecnologias de processamento, pois a elevada viscosidade dos termoplásticos, comparativamente aos termoendurecíveis, dificulta significativamente o processo. Muitos equipamentos de produção de termoplásticos são resultado de adaptações de equipamentos de produção de termoendurecíveis, onde normalmente é necessário adicionar fornos de pré-aquecimento. Neste trabalho, pretendeu-se produzir pré-impregnados de fibras contínuas com matriz termoplástica, por deposição a seco de polímero em pó sobre fibras de reforço (denominados por towpreg) para, posteriormente, serem transformados por pultrusão e caracterizados. As matérias-primas utilizadas foram: Polipropileno (PP) como matriz termoplástica e fibra de carbono como reforço. Por forma a melhorar as propriedades finais do compósito, foram otimizadas as condições de processamento na produção dos towpregs, estudando-se a influência da variação dos parâmetros de processamento no teor de polímero presente nestes, tendo como objetivo teores mássicos de polímero superiores a 30%. A condição ótima e a influência dos parâmetros de processamento foram obtidas com o auxílio do Método de Taguchi. Os perfis produzidos por pultrusão foram sujeitos a ensaios de flexão, de forma a obter as suas propriedades quando sujeitos a esse tipo de esforço. Foram também realizados ensaios de calcinação de forma a obter as frações mássicas de fibra e polímero presentes no compósito final. Sabidas as frações mássicas, converteramse em frações volúmicas e obtiveram-se as propriedades teoricamente esperadas através da Lei das Misturas e compararam-se com as obtidas experimentalmente. As propriedades obtidas foram também comparadas com as de outros compósitos pultrudidos.
Resumo:
In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This process may be extended to the encapsulation of drugs in these micro and nanoparticles for controlled release purposes. Conventional supercritical antisolvent (SAS) process involves spraying a solution (organic solvent + dissolved polymer) into supercritical fluid (CO[subscript 2]), which acts as an antisolvent. The high rate of mass transfer between organic solvent and supercritical CO[subscript 2] results in supersaturation of the polymer in the spray droplet and precipitation of the polymer as micro or nanoparticles occurs. In the SASEM method, ultrasonic vibration is used to atomize the solution entering the high pressure with supercritical CO[subscript 2]. At the same time, the ultrasonic vibration generated turbulence in the high pressure vessel, leading to better mass transfer between the organic solvent and the supercritical CO₂. In this study, two organic solvents, acetone and dichloromethane (DCM) were used in the SASEM process. Phase Doppler Particle Analyzer (PDPA) was used to study the ultrasonic atomization of liquid using the ultrasonic probe for the SASEM process. Scanning Electron Microscopy (SEM) was used to study the size and morphology of the polymer particles collected at the end of the process.
Resumo:
Aromatic poly(ether-ketone)s having pendant carboxyl groups have been obtained by direct, one-pot, Friedel-Crafts copolycondensation of 4,4'-diphenoxybenzophenone with a mixture of terephthaloyl chloride (TC) and trimellitic anhydride acid chloride (TAAC), over a wide range of TAAC/TC molar ratios, in the presence of anhydrous aluminum chloride. The syntheses were performed as precipitation-polycondensations, and the polymers were obtained in particulate form. Besides globular particles of polymer, small quantities of elongated, needlelike particles were observed when the mole ratio TAAC/TC was less than 1. Use of X-ray microdiffraction with synchrotron radiation has revealed that the needlelike material consists of a cyclic compound containing 10 phenylene units, i.e., the crystals are of a [2 + 2] macrocyclic dimer. The polymers obtained are soluble in strong acids and in mixtures of methanesulfonic acid or trifluoroacetic acid with chlorinated hydrocarbons. The molecular structures of the polymers were confirmed by H-1 and C-13 NMR spectroscopy. Reaction of TAAC with 4,4'-diphenoxybenzophenone produced mainly meta-orientation of the resulting ketone linkages. The size of the polymer particles, their molecular weights, and the melting behavior of the products obtained depend on the TAAC/TC ratio used. Ortho-keto acid residues, formed during reaction of anhydride groups of TAAC with 4,4'-diphenoxybenzophenone, exhibit ring-chain tautomerism. A carboxyl-containing aromatic polyketone derived from p-terphenyl, and thus having with no ether linkages in the main chain, was prepared by analogous chemistry, and functional derivatives of carboxy-substituted polyketones were also obtained and characterized.
Resumo:
Polymer particles in the nanometer range are of fundamental interest today, especially when used as carrier systems in the controlled release of drugs, cosmetics and nutraceuticals, as well as in coating materials with magnetic properties. The main objective of the present study concerns the production of submicron particles of poly (methyl methacrylate) (PMMA) by crystallization of a polymer solution by thermally controlled cooling. In this work, PMMA solutions in ethanol and 1-propanol were prepared at different concentrations (1% to 5% by weight) and crystallized at different cooling rates (0.2 to 0.8 ° C / min) controlled linearly. Analysis of particle size distribution (DLS / CILAS) and scanning electron microscopy (SEM) were performed in order to evaluate the morphological characteristics of the produced particles. The results demonstrated that it is possible to obtain submicron polymer perfectly spherical particles using the technique discussed in this study. It was also observed that, depending on the cooling rate and the concentration of the polymer solution, it is possible to achieve high yield in the formation of submicron particles. In addition, preliminary tests were performed in order to verify the ability of this technique to form particulated carrier material with magnetic properties. The results showed that the developed technique can be an interesting alternative to obtain polymer particles with magnetic properties
Resumo:
Objectives: The aim of this study was to evaluate the behavior of the polymer histomorphometrically castor during the healing process of defects of critical size calvarial preparations in rats. Materials and Methods: Twenty animals underwent a surgical procedure that was to be held in the calvaria of each animal a critical defect of 8 mm in diameter with a drill trephine. The rats were divided into two groups according to the following procedures: group C received no treatment and the bone defect site was filled with blood clot, group M, the bone defect was filled with castor oil polymer particles. The animals were sacrificed 180 days after the surgical procedures. After routine laboratory procedures the specimens were subjected to analysis histomorphometric. Results: In groups C the newly formed bone tissue was well developed, with adjacent areas of osteoid matrix rich in osteoblasts, and restricted to the vicinity of the edges of the defect. In animals of group M was observed newly formed lamellar bone tissue restricted to the vicinity of the defect edges and particles of polymer Castor distributed throughout the defect. There was a higher percentage of newly formed bone area was statistically significant in group C compared to animals in group M. Conclusions: Within the limits of this study can conclude that the castor oil polymer is biocompatible and had kept the area during the healing of critical size defects in surgically prepared rat calvariae.
Resumo:
Objectives: The aim of this study was to evaluate the behavior of the polymer histomorphometrically castor during the healing process of defects of critical size calvarial preparations in rats. Materials and Methods: Twenty animals underwent a surgical procedure that was to be held in the calvaria of each animal a critical defect of 8 mm in diameter with a drill trephine. The rats were divided into two groups according to the following procedures: group C received no treatment and the bone defect site was filled with blood clot, group M, the bone defect was filled with castor oil polymer particles. The animals were sacrificed 180 days after the surgical procedures. After routine laboratory procedures the specimens were subjected to analysis histomorphometric. Results: In groups C the newly formed bone tissue was well developed, with adjacent areas of osteoid matrix rich in osteoblasts, and restricted to the vicinity of the edges of the defect. In animals of group M was observed newly formed lamellar bone tissue restricted to the vicinity of the defect edges and particles of polymer Castor distributed throughout the defect. There was a higher percentage of newly formed bone area was statistically significant in group C compared to animals in group M. Conclusions: Within the limits of this study can conclude that the castor oil polymer is biocompatible and had kept the area during the healing of critical size defects in surgically prepared rat calvariae
Resumo:
Die vorliegende Arbeit behandelt die Polymerisation in nicht-wässrigen Emulsionen – bestehend aus einem perfluorierten Solvens und einem Kohlenwasserstoff - unter Einsatz verschiedener Monomere, Katalysatoren und Polymeristionsmethoden zur Generierung von Polymerpartikeln verschiedenster Art. Es wurde gezeigt, dass in diesen inerten Medien zahlreiche Methoden zur Polymererzeugung unter gleichzeitiger Morphologiekontrolle eingesetzt werden können, die in konventionellen wässrigen, heterophasischen Systemen versagen.rnrnAusgangspunkt war die literaturbekannte Metallocen-katalysierte Synthese von Polyethylen (PE)- und Polypropylen (PP)-Nanopartikeln in perfluorierter Emulsion in Gegenwart hochmolekularer Blockcopolymere als Stabilisierungsagens. Mithilfe kinetischer Untersuchungen hinsichtlich der PE-Synthese wurde im Rahmen dieser Arbeit ein Modell entwickelt, welches den Diffusionsweg eines gasförmigen Monomers über die verschiedenen Phasengrenzen hinweg zum aktiven katalytischen Zentrum in der dispergierten Phase beschreibt. Ferner konnte die Diffusions- und Reaktionsbestimmtheit der Reaktion in Abhängigkeit verschiedener Reaktionsparameter nachgewiesen sowie ein tieferer Einblick über den Ort der Polymerisation in den heterophasischen Systemen erhalten werden.rnrnDie so gewonnenen Erkenntnisse wurden für die erfolgreiche Synthese von Poly(ethylen-1-hexen)-Copolymeren in perfluorierter Emulsion genutzt, wobei der Comonomergehalt im resultierenden Polymer über einen breiten Bereich variiert werden konnte. Neben der Homo- und Copolymerisation von Polyolefinen wurde in der vorliegenden Arbeit weiter gezeigt, dass die heterogenen Fluide zum Aufbau komplexerer Morphologien wie Kern-Schale-Nanopartikeln genutzt werden können; so gelangte man zu Partikeln mit Kernen aus isotaktischem PP, ummantelt von „weichem“ Poly(n-butylacrylat).rnrnEin weiterer Fokus dieser Arbeit lag auf der Erweiterung der Anwendungsmöglichkeiten der perfluorierten Emulsionen, und so wurde bspw. der Zugang zu Polymerdispersionen aus konjugierten Materialien mit Partikeldurchmessern von 70-100 nm mittels Cyclopolymerisation eröffnet. Ferner konnten als bioverträgliche und biologisch abbaubare Materialien Partikel aus epsilon-Caprolacton in koordinativ-anionischer Polymerisation gewonnen werden. Im Zuge dessen wurden Emulgatoren entwickelt, die den Einsatz polarer Monomere in perfluorierter Emulsion erlauben.rnrnSchlussendlich konnten mittels trifunktioneller Polymere mit lipophilen und fluorophilen Gruppen sowie Lewis-basischen Ankergruppen Ag- und Cu-Partikel dergestalt oberflächenmodifiziert werden, dass ein homogenes Einbetten in eine perfluorierte Matrix möglich war, was antibakterielle perfluorierte Werkstoffe - erwiesen an E. coli - lieferte.