995 resultados para POLYMER NANOFIBERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we have demonstrated that a rotating metal wire coil can be used as a nozzle to electrospin nanofibers on a large-scale. Without using any needles, the rotating wire coil, partially immersed in a polymer solution reservoir, can pick up a thin layer of charged polymer solution and generate a large number of nanofibers from the wire surface simultaneously. This arrangement significantly increases the nanofiber productivity. The fiber productivity was found to be determined by the coil dimensions, applied voltage and polymer concentration. The dependency of fiber diameter on the polymer concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the coil electrospun fibers were thinner with narrower diameter distribution. The profiles of electric field strength in the coil electrospinning was calculated and showed concentrated electric field intensity on the wire surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elcctrospinning is a very useful technique to produce polymeric nanofibers for diverse applications. The conventional needle-based electrospinning system has VCIY limited fiber productivity and a key challenge has been to develop electrospinning systems that can produce uniform nanofibcrs on a large scale l-3.
In this study, we have demonstrated that a rotating metal wire coil can be used as a nozzle to eiectrospin nanofibers on a large-scale. Without using any needles, the rotating wire coil, partially immersed in a polymer solution reservoir, can pick up a thin layer of charged polymer solution and generate a large number of nanofibers from the wire surface simultaneously. This arrangement significantly increases the nanofiber productivity.
The fiber productivity was found to be determined by the coil dimensions, such as wire diameter, coil radius and distance, and coil length. The effects of applied voltage, the distance bctv,lcen the coil nozzle and collector, and polymer concentration on the fiber
morphology were examined. The dependency of fiber diameter on the polymer concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the diameter distribution was narrower for the
coil electrospun fibers.
The profiles of electric fIeld strength in coil electrospinning was calculated and showed
concentrated electrical field intensity on the top wire surface. This novel concept of using wire coil as the electrospinning nozzle will contribute to the further development of new large-scale needleless electrospinning systems for nanofiber production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ag nanoparticle embedded NaYF4:0.05Tb center dot chi Ce/ PVP (PVP stands for poly(vinyl pyrrolidone)) composite nanofibers have been prepared by electrospinning. A field emission scanning electron microscope and x-ray diffraction have been utilized to characterize the size, morphology and structure of the as-prepared electrospun nanofibers. Obvious photoluminescence (PL) of NaYF4:0.05Tb center dot 0.05Ce/PVP electrospun nanofibers due to the efficient energy transfer from Ce3+ to Tb3+ ions is observed. The PL intensity of the electrospun nanofibers decreases gradually with the addition of Ag nanoparticles. No obvious surface plasmon resonance enhanced luminescence is observed. The reasons for the weakening of the emission intensity with the addition of Ag nanoparticles have also been discussed in this work.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we report for the first time on the synthesis of ZnO nanocrystallites in conjugated polymer (PPV) nanofibers by the coupling of the in situ/blend methods and electrospinning. These composite nanofibers were characterized by fluorescence microscopy, atomic force microscope (AFM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The major objective of this work was to characterize the status of CdTe nanoparticles attached to the surface of poly(4-vinylpyridine) (P4VP) nanofibers. Scanning electron microscopy and transmission electron microscopy images indicated that the attachment of CdTe nanoparticles enlarged the diameter of P4VP nanofibers. Moreover, the results of the energy-dispersive X-ray spectrum and the electron diffraction pattern revealed that the deposition on the surface of P4VP nanofibers was CdTe in a cubic lattice

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growing interest in polymeric nanofibers has been increasing the push for the development of simple and efficient nanofiber-preparation techniques. We herein describe how a conventional solution process is readapted to suit the needs for fast and efficient production of short polymeric nanofibers. Poly(ethylene-co-acrylic acid) (PEAA), a semi-crystalline polymer, was used as model. When a PEAA solution was injected into an alcoholic non-solvent while simultaneously applying high shear to the non-solvent system, PEAA nanofibers were obtained with average diameter as thin as 113 nm and length as short as 4.5 _m. The fiber diameter and length were also adjustable by varying the operating parameters. This one-step technique advances the currently available nanofabrication tools by adjusting a widely accepted concept to the nano-scale. It may constitute a viable method for large-scale production of short polymeric nanofibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite fibers composed of poly(L-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (similar to 4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofiber yarns are important building blocks for making three-dimensional nanostructures, e.g. through a knitting or weaving process, with better mechanical properties than nanofiber nonwovens and well-controlled fibrous construction. However, it still remains challenging to produce quality nanofiber yarns in a sufficient rate. In this study, we have proven that online stretching during electrospinning of nanofiber yarns can considerably improve fiber alignment and molecular orientation within the yarn and increase yarn tensile strength, but reduce fiber/yarn diameters. By compensating twist during online stretching, the device can prepare nanofiber yarns with different stretch levels, but maintaining the same twist multiplier. This allows us to examine the effect of stretching on fiber and yarn morphology. It was interesting to find that on increasing the stretching ratio from 0% to 95%, the yarn diameter reduced from 135.1 ± 20.3 μm to 46.2 ± 10.2 μm, and the fiber diameter reduced from 998 ± 141 nm to 631 ± 98 nm, whereas the yarn tensile strength increased from 48.2 ± 5.6 MPa to 127.7 ± 5.4 MPa. Such an advanced yarn electrospinning technique can produce nanofiber yarn with an overall yarn production rate as high as 10 m min−1. This may be useful for production of nanofiber yarns for various applications.