989 resultados para POLYMER BLEND


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar cells on thin conformable substrates require conventional plastics such asPS and PMMA that provide better mechanical and environmental stability with cost reduction. We can also tune charge transfer between PPV derivatives and fullerene derivatives via morphology control of the plastics in the solar cells. Our group has conducted morphology evolution studies in nano- and microscale light emitting domains in poly (2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) and poly (methyl methacrylate) (PMMA) blends. Our current research has been focused on tricomponent-photoactive solar cells which comprise MEH-PPV, PMMA, and [6,6]-phenyl C61-butyric acid methyl ester (PCBM, Figure 1) in the photoactive layer. Morphology control of the photoactive materials and fine tuning of photovoltaic properties for the solar cells are our primary interest. Similar work has been done by the Sariciftci research group. Additionally, a study on inter- and intramolecular photoinduced charge transfer using MEH-PPV derivatives that have different conjugation lengths (Figure 1, n=1 and 0.85) has been performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer nanocomposites constitute an important class of materials whose properties depend on the state of dispersion of the nanoparticles in the polymer matrix. Here we report the first observations of confinement-induced enhancement of dispersion in nanoparticle-polymer blend films. Systematic variation in the dispersion of nanoparticles with confinement for various compositions and matrix polymer chain dimensions has been observed. For fixed composition, strong reduction in glass transition temperature, T-g, is observed with decreasing blend-film thickness. The enhanced dispersion occurs without altering the polymer-particle interactions and seems to be driven by enhanced matrix-chain orientation propensity and a tendency to minimize the density gradients within the matrix. This implies the existence of two different mechanisms in polymer nanocomposites, which determines their state of dispersion and glass transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique strategy was adopted here to improve the compatibility between the components of an immiscible polymer blend and strengthen the interface. PMMA, a mutually miscible polymer to both PVDF and ABS, improved the compatibility between the phases by localizing at the blends interface. This was supported by the core-shell formation with PMMA as the shell and ABS as the core as observed from the SEM micrographs. This phenomenon was strongly contingent on the concentration of PMMA in the blends. This strategy was further extended to localize graphene oxide (GO) sheets at the blends interface by chemically coupling it to PMMA (PMMA-g-GO). A dramatic increment of ca. 84% in the Young's modulus and ca. 124% in the yield strength was observed in the presence of PMMA-g-GO with respect to the neat blends. A simultaneous increment in both the strength and the modulus was observed in the presence of PMMA-g-GO whereas, only addition of GO resulted in a moderate improvement in the yield strength. This study reveals that a mutually miscible polymer can render compatibility between the immiscible pair and can improve the stress transfer at the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185 degrees C, above the critical temperature, the amounts of PMMA and SAN phases were comparable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 degrees C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U-q0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-cost photovoltaic energy conversion using conjugated polymers has achieved great improvement due to the invention of organic bulk heterojunction. in which the nanoscale phase separation of electron donor and acceptor favors realizing efficient charge separation and collection. We investigated the polymer photovoltaic cells using N, N'-bis(1-ethylpropyl)-3,4,9,10-perylene bis(tetracarboxyl diimide)/poly(3-hexyl thiophene) blend as an active layer. It is found that processing conditions for the blend films have major effects on its morphology and hence the energy conversion efficiency of the resulting devices. By optimizing the processing conditions, the sizes of donor/acceptor phase separation can be adjusted for realizing efficient charge separation and collection. The overall energy conversion efficiency of the photovoltaic cell processed with optimized conditions increases by nearly 40% compared to the normally spin-coated and annealed cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the film thickness (l(0)) effect on the phase and dewetting behaviors of the blend film of poly(methyl methacrylate)/poly (styrene-ran-acrylonitrile) (PMMA/SAN) has been studied by in situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The thinner film shows the more compatibility of the blend, and the phase separation of the film occurs at l(0) > 5R(g) (radius of gyration). An initially time-independent q*, the characteristic wavenumber of the phase image, which is in good agreement of Cahn's linearized theory for the early stage of spinodal decomposition, has been obtained in real space and discussed in detail. For 5R(g) > l(0) > 3R(g), a "pseudo-dewetting/(phase separation + wetting)" behavior occurs, where the pseudo-wetting is driven by the concentration fluctuation mechanism. For 10 < 3R(g), a "real dewetting/(phase separation + wetting)" behavior occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics of dewetting and phase separation in ultrathin films (thickness is ca. one radius of gyration, approximate to 1 R-g) of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blends on Si substrate has been studied by in situ atomic force microscopy (AFM). In the miscible region, a "spinodal-like" dewetting driven by a composition fluctuation recently predicted by Wensink and Jerome (Langmuir 2002, 18, 413) occurs. In the two-phase region, the dewetting of the whole film is followed by phase separation in the droplets, coupling with the wetting of the substrate by the PMMA extracted by the strong attractive interaction between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the molecular weights (molecular weight of polystyrene, M-w,M-PS, varying from 2.9 to 129 k) on the surface morphologies of spin-coated and annealed polystyrene/poly (methyl methacrylate) (PS/PMMA = 50/50, w/w) blend films were investigated by atomic force microscopy and X-ray photoelectron spectroscopy. For the spin-coated films, when the M-w,M-PS varied from 2.9 to 129 k, three different kinds of surface morphologies (a nanophase-separated morphology, a PMMA cellular or network-like morphology whose meshes filled with PS, a sea-island like morphology) were observed and their formation mechanisms are discussed, respectively. Upon annealing, two different morphology-evolution processes were observed. It is found that a upper PS-rich phase layer is formed when M-w,M-PS < 4 k, and this behavior is mainly attributed to the low interfacial tension between PS and PMMA component. When M-w,M-PS > 4 k, the PS-rich phase forms droplets on top of the PMMA-rich phase layer which wets the SiOx substrate. These results indicate that the surface morphology of the polymer blend films can be controlled by the polymer molecular weight and annealing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of polymerization of monomer reactant-polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.