896 resultados para POLYIMIDE BLENDS
Resumo:
Radiation effects on polyimide blends' were studied at different irradiation temperatures and with different irradiation doses. The irradiation polyimides were the blends of linear polyimide (HQDPA/ODA) and 4-phenylethynyl phthalic anhydride end-capped oligomer polyimide. The tensile strength and the elongation at break of irradiated films were determined as the function of irradiation temperature and dose. Under proper conditions crosslinking reaction occurred when the polyimide blends were irradiated at high temperature. The mechanical properties of irradiated polyimide blends were found to be different from the linear polyimide.
Resumo:
The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.
Resumo:
The thermosetting polyimide PMR-I5 and its blends with thermoplastic polyimides have been studied by dynamic mechanical analysis. The results obtained indicate that the level of beta relaxations in PMR-15 are increased with an increase in cross-linking density. This phenomenon is interpreted as a change of chemical structure during the cross-linking process. Addition of thermoplastic polyimide makes the magnitude of beta relaxations increase when PMR-15 is the major component. This might be due to the strong intermolecular charge-transfer interaction between PI and PI or PMR-15 and PMR-15 molecular chains being partly replaced by the weak intermolecular interaction between PI and PMR-15 in PMR-15/PI blends, resulting in some phenylene rings or imide groups in PIs and PMR-15 chains being able to participate in beta relaxation. However, this increment in beta relaxation magnitude can be reduced by heat treatment of the sample, as a result of phase separation. Hence, it is concluded that the beta relaxation magnitude is determined by the number of groups which can participate in relaxation per unit length, i.e. the magnitude of beta relaxation increases with decreasing interaction between the molecular chains. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The miscibility and crystallization behaviour of the blends of poly(ether ether ketone) (PEEK) with two thermoplastic polyimides (PI), PEI-E and YS-30, prepared by solution blending were studied by the use of small-angle X-ray scattering (SAXS), differential scanning calorimetry (d.s.c.) and polarizing microscopy techniques. The results obtained show that PEEK/YS-30 is miscible, while PEEK/PEI-E is partially miscible only in the composition range with PEI-E content up to 20 wt%. The crystallization behaviour of PEEK in PEEK/PI blends depends on the crystallization condition of the blend sample as well as the chemical structure and the content of the PI added. Our SAXS results indicate that the segregation of PI molecular chains during crystallization of PEEK chains in the blends is interfibrillar for PEEK/PEI-E blends, but interlamellar for PEEK/YS-30 blends. The compatibility and the crystallization behaviour are discussed in terms of charge transfer interaction between PI and PI molecules and between PI and PEEK molecules.
Resumo:
Compatibility, morphology, crystalline structure and mechanical properties of the blends of a thermosetting polyimide with thermoplastic polyimides consisting of dianhydrides of different lengths have been studied by the use of dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) techniques. The results of our research show that the blends change from compatible to semi-compatible when the difference between the length of the dianhydrides of the two components increases. Addition of a thermoplastic polyimide inhibits the crystallization of the thermosetting component. However, this effect decreases with increasing length of the dianhydrides and the distribution of the molecules of the thermoplastic polyimide component changes from interlamellar to interfibrillar. Impact strength and morphology of the fractured surfaces indicate that among the semiinterpenetrating polymer networks (semi-IPN) obtained the toughening effect of the partially compatible one is the best. The results are discussed in terms of charge transfer interaction between imide group and p-phenylene group.
Resumo:
The miscibility and morphology of polyimide/polyimide blends, PEI-E/PTI-E(a)) and PBPI-E/IPTI-E(a)), have been studied by means of C-13 CPMAS NMR technique. The results indicate that PEI-E/PTI-E blends are miscible on a molecular level, but molecular aggregation exists in pure PBPI-E specimen as well as PBPI-E/PTI-E blends with high content of PBPI-E, which vanishes in the blends with high content of PTI-E. When the content of PBPI-E is higher than that of PTI-E, the addition of PTI-E to PBPI-E has almost no effect on the size of the PBPI-E rigid domains, but has a large effect on the populations of the PBPI-E rigid domains. It is the intermolecular charge-transfer interaction that plays a critical role in the miscibility of PEI-E/PTI-E and PBPI-E/PTI-E blends.
Resumo:
The structure and miscibility of polyimide PBPI-E/PTI-E blends were studied by wide- and small-angle X-ray scattering and dynamic mechanical analysis, where PBPI-E is a biphenyl-dianhydride-based polyimide, and PTI-E is a polyimide from 4,4'-thiodiphthalic anhydride and 4,4'-oxydianiline. The results obtained show that there exists a paracrystalline structure in the blends with high content of PBPI-E, but this does not affect the miscibility of the blends. The blends are miscible over the entire composition range, since only one T(g) was observed for each blend. Meanwhile, the segregation of PTI-E during crystallization of PBPI-E in the blends is interlamellar.
Resumo:
Three pairs of polyimide/polyimide blends (50/50 wt%) with different molecular structures were prepared by two ways, i.e. mixing of the polyamic acid precursors with subsequent imidization, and direct solution mixing of the polyimides. The blends were studied with DMA technique. The results obtained show that all the blends prepared with these two different ways are miscible, as there existed only one glass transition temperature(Tg) for all the blends. It is suggested that the miscibility of these polyimide/polyimide blends is a result of the strong inter-molecular charge-transfer interaction between the chains of their components.
Resumo:
The crystallization, miscibility and structure of polyimide PBPI-E/PTI-E blends were studied by DSC, DMA, NMR and fluorescence techniques, where PBPI-E is a biphenyldianhydride-based polyimide, and PTI-E is a polyimide from 4,4'-thiodiphthalic anhydride and 4,4'-oxydianiline. The results obtained show that PBPI-E/PTI-E blends are miscible at a molecular level for all the compositions studied. However, the glass transition temperature of the blends is well below the value predicted by the Fox equation, and the blends are not stable at high temperature, i.e. phase separation will occur when the blends are annealed about T-g. Moreover, the melting point T-m, differential enthalpy Delta H and spin-lattice relaxation time T-l(c) of the blends increase with the annealing time. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Miscibility, crystallization, and mechanical properties of blends of thermosetting polyimide PMR-15 and phenolphthalein poly(ether ketone) (PEK-C) were examined. With the exception of the 90/10 blend, which has two glass transition peaks, all the blends with PMR-15 less than 90 wt % are miscible in the amorphous state according to DMA results. Addition of PEK-C hindered significantly the crystallization of PMR-15, indicating that there must exist some kind of interaction between molecular chains of PMR-15 and those of PEK-C. The semi-IPN system of PMR-15/PEK-C blends exhibits good toughness. Two distinct microphases, interweaving at the phase boundaries, were found in the PMR-15/PEK-C 60/40 blend. The toughness effect of the blends is discussed in terms of the interface adhesion between the two distinct phases and the domain sizes of the phases. The relation between miscibility and toughness of the blends was investigated. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
Miscibility and crystallization behavior of solution-blended poly(ether ether ketone)/polyimide (PEEK/PI) blends were investigated by using DSC, optical microscopy and SAXS methods. Two kinds of PIs, YS-30 and PEI-E, which consist of the same diamine but different dianhydrides, were used in this work. The experimental results show that blends of PEEK/YS-30 are miscible over the entire composition range, as all the blends of different compositions exhibit a single glass transition temperature. The crystallization of PEEK was hindered by YS-30 in PEEK/YS-30 blends, of which the dominant morphology is interlamellar. On the other hand, blends of PEEK/PEI-E are immiscible, and the effect of PEI-E on the crystallization behavior of PEEK is weak. The crystallinity of PEEK in the isothermally crystallized PEEK/YS-30 blend specimens decreases with the increase in PI content. But the crystallinity of PEEK in the annealed samples almost keeps unchanged and reaches its maximum value, which is more than 50%. The spherulitic texture of the blends depends on both the blend composition and the molecular structure of the PIs used. The more PI added, the more imperfect the crystalline structure of PEEK. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Para-para linked aromatic poly(amic ester) precursors of rodlike polyimide (PI) BPDA-PDA and polyetherimide (PEI) HQDPA-ODA were synthesized. The para-para linked poly(amic ester)s were employed in this work to obtain, in theory, full-imidized polyimides. The two precursors were mixed by dissolving them in N, N'-dimethyl acetamide and subsequently coagulating in methanol. After thermal imidization, the miscibility behaviour of the resulting composites has been studied by means of dynamic mechanical analysis (d.m.a.) and differential scanning calorimetry (d.s.c.). The composites show a single glass transition temperature (T-g) at both d.m.a. and d.s.c. in which the T-g increases with increasing PI content. These Tg values are reproducible in repeated heating cycles, suggesting the true miscibility of the blends. (C) 1997 Elsevier Science Ltd.