5 resultados para POLYBLENDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mutual influence of the components on the crystallization behaviour of polyblends, namely, isotactic polybutene-1 (PB) with low-density and high-density polyethylene (LDPE and HDPE), has been studied using techniques such as differential scanning calorimetry, infra-red spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, etc. Each component in the blend is observed to crystallize independently. There is phase separation and incompatibility, as shown from tensile properties and scanning electron microscopic observation of the fracture surface of the blend. For HDPE-PE blends (<30% HDPE), unusual form I′ crystals of PB are observed along with the usual form II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The miscibility of blends of cellulose diacetate (CDA) and poly(vinyl pyrrolidone) (PVP) was extensively studied by means of differential thermal analysis and dynamic mechanical thermal analysis, tensile test, measuring viscosity of diluted and concentrated solutions of blends in acetone-ethanol mixture and morphological observations. A single glass transition temperature is observed, which is intermediate between the glass transition temperatures associated with each component and depends on composition. A synergism in mechanical properties of blends was found. The absolute viscosity and the intrinsic viscosity of solutions of blends are much higher than the weight average values of solutions of CDA and PVP. Optically clear and thermodynamically stable films were formed in the composition range of CDA/PVP = 100/0 to 50/50w/w. Fourier transform infrared was used to investigate the nature of CDA-PVP interaction. Hydrogen bonds were formed between hydroxyl groups of CDA and carbonyl groups of PVP. Heats of solutions of CDA/PVP blends and their mechanical mixtures were measured by using a calorimeter. Mixing enthalpy obtained with Hess's law approach was used to quantify interaction parameters of this blending system. It was found that mixing enthalpies and interaction parameters were negative and composition dependent. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.