999 resultados para POLY(ORTHO-PHENYLENEDIAMINE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported the interesting finding that large scale uniform poly(o-phenylenediamine) nanobelts with several hundred micrometers in length, several hundred nanometers in width, and several ten nanometers in height can be rapidly yielded from an o-phenylenediamine-HAuCl4 aqueous solution without the additional introduction of other templates or surfactants at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ortho-phenylenediamine) and oligomers of ortho-phenylenediamine were chemically synthesized and characterized by UV-vis, (1)H and (13)C NMR, FTIR and resonance Raman spectroscopies. Polymerization of ortho-phenylenediamine in HCl medium with ammonium persulfate only leads the trimer compound, in disagreement with some previous reports. Nevertheless, in acetic acid medium it was possible to prepare a polymer constituted by ladder phenazinic segments with different protonation levels and quinonediimine rings (polyaniline-like). X-ray absorption at N K-edge (N K XANES), X-ray photoelectron (XPS) and Electron paramagnetic resonance (EPR) spectroscopies were used to determine the different kinds of nitrogen presents in this class of polymer. N K XANES spectrum of poly(ortho-phenylenediamine) shows the band of -N=nitrogen of non-protonated phenazinic rings at 398.2 eV. In addition, XPS and N K XANES data confirm the presence of different types of protonated nitrogens in the polymeric poly(ortho-phenylenediamine) chain and the EPR spectrum shows that the polymer has a very weak polaronic signal. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid, templateless, surfactantless approach is proposed to prepare microfibrils by simply mixing of aqueous cupric sulfate and o-phenylenediamine (oPD) solutions at room temperature. The as-prepared poly(o-phenylenediamine) (PoPD) microfibrils have been characterized by optical microscope, transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis) and X-ray diffraction (XRD).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemically deposited poly(o-phenylenediamine) film on a Pt electrode has been investigated utilizing in situ external reflection FTIR spectroelectrochemistry technique. The prepared ladder polymer film is found to be partially ring-opened. The dopant ClO4- is evidenced to orient in such a way that more than one oxygen atom attach to the charge sites of the polymer. This suggests that positive charges of oxidized polymer are partially delocalized over the whole chains. The proton movement observed during the oxidation reaction is associated with the solvated MeCN molecule. It is proposed that the proton diffusion, dissolvation and protonation of the film may be essential to the electrochemical reduction reaction of the film. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The redox conversion of heme-containing protein horseradish peroxidase (HRP), which has a molar mass of 40,000, was studied. The conversion was obtained at an electrochemical polymerized o-phenylenediamine (PPD) film-modified platinum electrode. Optical c

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mediatorless H2O2 sensor based on coelectropolymerization of horse radish peroxidase (HRP) and o-phenylenediamine (o-PD) is described. The electrode responds to H2O2 in a few seconds and gives a current density of 73.3 nA 1 mu mol(-1) cm(-2) at -100 mV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly-o-methylaniline (poly-o-toluidine) was doped by some protonic acids. It was found that the acidity, molecular size and oxidizing ability of protonic acids affected the doping level and conductivity of polymer obtained to some extent. The organic acid

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly-ortho-methylanilines (POT) in three states fully oxidized, fully reduced and oxidized in varying degrees were synthesized by the reaction of common POT (C-POT) having nearly equal amounts of benzenediamine and quinonediimine units with iodine or phenyl-hydrazine, and the resulting polymers were characterized by IR, C-13-NMR, SEM and elemental analysis. The results showed that the quinonediimine unit in C-POT could be reduced by phenylhydrazine to the benzenediamine unit, forming the polymer with low OD (oxidation degree) or in a fully reduced state and that iodine-oxidation resulted in the increase of quinonediimine unit and decrease of benzenediamine unit. The solubility and flexibility of the formed polymers depend strongly on the amount of quinonediimine unit in it. It is necessary to reduce the content of quinonediimine structure unit in order to improve the solubility of aniline-class polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of polyaniline and poly-omicron-methylaniline of different oxidation degrees with I2 were followed by FTIR and electrical conductivity measurements. The results showed that the reaction of common polyanilines with I2 was oxidation in nature whereas that of the fully reduced ones was doping. The latter took place in two steps: oxidation of benzene-diamine units into quinone-diimine units (redox between I2 and the polymer chain) and formation of a conjugated system consisting of four aromatic rings (intramolecular chain redox).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of chemically prepared poly-p-phenylenediamine (PpPD) was investigated by Resonance Raman (RR), FTIR, UV-VIS-NIR, X-ray photoelectron (XPS), X-ray Absorption at Nitrogen K edge (N K XANES), and Electron paramagnetic Resonance (EPR) spectroscopies. XPS, EPR and N K XANES data reveal that polymeric structure is formed mainly by radical cations and dication nitrogens. It excludes the possibility that PpPD chains have azo or phenazinic nitrogens, as commonly is supposed in the literature. The RR spectrum of PpPD shows two characteristic bands at 1527 cm(-1) and 1590 cm(-1) that were assigned to nu C=N and nu C=C of dication units, respectively, similar to polyaniline in pernigraniline base form. The presence of radical cations was confirmed by Raman data owing to the presence of bands at 1325/1370 cm(-1), characteristic of nu C-N of polaronic segments. Thus, all results indicate that PpPD has a doped PANT-like structure, with semi-quinoid and quinoid rings, and has no phenazinic rings, as observed for poly-o-phenylenediamine. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-assembly of oligo(o-phenylenediamine) (OPD) into 1-D nanostructures on a macroscopic length scale was found when they were transferred from N-methyl pyrrolidone to deionized water. Field emission scanning electron microscopy and confocal fluorescence microscopy were used to investigate the morphology of the precipitates. Results showed that large amounts of OPD 1-D supertructures could be obtained through the simple reprecipitation route, and the length of the fibers could be tuned from microscale to macroscale by adjusting the ratio of two solvents. X-ray diffraction patterns and UV-vis spectra revealed that pi-pi interactions between OPD molecules that facilitated the formation of 1-D structures became predominant when they were transferred from a good solvent to a bad one. Accordingly, a possible formation mechanism was proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die Zielsetzung der Arbeit war die Darstellung von Polyindenofluorenen PIF, einer neuen Klasse konjugierter Polymere, die aus Dihydroindenofluoren-Untereinheiten aufgebaut und formal an den Methylenbrücken über exocyclische Doppelbindungen verknüpft sind.Am Anfang stand die Ausarbeitung eines allgemeinen Synthesekonzeptes zum Aufbau von Polymeren mit sterisch gehinderten Doppelbindungen. Mit der Kupplung von geminalen Dichloriden mit Übergangsmetallverbindungen als Reduktionsmittel wurde eine vielversprechende neue Polyolefinierungsmethode gefunden. Diese Synthesemethode zeichnet sich durch eine einfache Durchführung, synthetisch leicht zugängliche Edukte und neutrale Reaktionsbedingungen aus. Es lassen sich selbst bei gespannten Olefinen sehr gute Ausbeuten erzielen. Drei strukturisomere Dihydroindenofluorene wurden als potentielle Strukturbausteine untersucht, die sich durch die Stellung der Methylenbrücken bezüglich des zentralen Phenylrings unterscheiden. Die resultierenden Polymerstrukturen wurden als para-, meta- und ortho-Poly(indenofluorene) bezeichnet.Das Poly(para-indenofluoren) pPIF wurde als ein hochmolekulares und strukturdefiniertes Polymer erhalten. Die über Molekulargewichtsanalyse (GPC) erhaltenen Polymerisationsgrade ergaben Werte von bis zu 55 Wiederholungseinheiten. Die längstwellige Absorptionsbande von pPIF liegt bei circa 800 nm, was einer Bandlücke von 1.45 eV enspricht. Darüberhinaus zeichnet sich pPIF durch eine hohe chemische Stabilität und sehr hohe Löslichkeit aus. Durch den kleinen Bandabstand ließen sich interessante nichtlineare-optische (NLO) Effekte und eine hohe Photoleitfähigkeit erwarten. Da diese Effekte von materialwissenschaftlichem Interesse sind, wurden detailierte Untersuchungen dieser Eigenschaften vorgenommen. Das Poly(meta-indenofluoren) mPIF konnte mit einem Polymerisationsgrad von circa 13 Wiederholungseinheiten dargestellt werden. Bedingt durch die meta-Verknüpfung, die keine Konjugation über den zentralen Phenylring erlaubt, liegt das Absorptionsmaximum, im Vergleich zu pPIF blauverschoben bei 437 nm.Bei Poly(ortho-indenofluoren) oPIF scheiterten alle Versuche zum Aufbau eines Polymers, was mit den, im Vergleich zu pPIF und mPIF, noch stärker gespannten Doppelbindungen zwischen den Indenofluorenen, sprich Untereinheiten, erklärt werden kann. An strukturdefinierten Modellverbindungen von pPIF konnte gezeigt werden, daß eine Konvergenz der elektronischen Eigenschaften beim Nonamer noch nicht erreicht ist. Bei der Auftragung von 1/n gegen Eabs wird, nach linearer Extrapolation, ein Wert von circa 18 für die effe