972 resultados para POLARIZATION PHENOMENA
Resumo:
Particle and photon polarization phenomena occurring in collisions of relativistic ions with matter have recently attracted particular interest. Investiga- tions of the emitted characteristic x-ray and radiative electron capture radiation has been found to be a versatile tool for probing our present understanding of the dynamics of particles in extreme electromagnetic ¯elds. Owing to the progress in x-ray detector technology, in addition, accurate measurements of the linear po- larization for hard x-ray photons as well as the determination of the polarization plane became possible. This new diagnostic tool enables one today to derive in- formation about the polarization of the ion beams from the photon polarization features of the radiative electron capture process.
Resumo:
The kinetics of facilitated ion-transfer (FIT) reactions at high driving force across the water/1,2-dichloroethane (W/DCE) interface is investigated by scanning electrochemical microscopy (SECM). The transfers of lithium and sodium ions facilitated by dibenzo-18-crown-6 (DB18C6) across the polarized W/DCE interface are chosen as model systems because they have the largest potential range that can be controlled externally. By selecting the appropriate ratios of the reactant concentrations (Kr c(M)+/c(DB18C6)) and using nanopipets as the SECM tips, we obtained a series of rate constants (k(f)) at various driving forces (Delta(O)(W) phi(ML+)(0') - Es, Delta(O)(W) phi(ML+)(0') is the formal potential of facilitated ion transfer and Es is the potential applied externally at the substrate interface) based on a three-electrode system. The FIT rate constants k(f) are found to be dependent upon the driving force. When the driving force is low, the dependence of 1n k(f) on the driving force is linear with a transfer coefficient of about 0.3. It follows the classical Butler-Volmer theory and then reaches a maximum before it decreases again when we further increase the driving forces. This indicates that there exists an inverted region, and these behaviors have been explained by Marcus theory.
Resumo:
The transfer of chloride ions into a low resistance anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In all cases, concentration polarization of Cl- ions is exterior to the membrane. It controls the flux and produces the limiting currents: either steady state or transient (peak type) current. In CV experiments, when the size of the holes in the membrane was much smaller than the distance between membrane holes, the Cl- anion transfer showed steady state voltammetric behavior. Each hole in the membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in the membrane was large or the distance between membrane holes was small, the CV curve of the Cl- anion transfer across the membrane showed a peak shape, which was attributed to linear diffusion. In AC impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low DC bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing DC bias and only one semicircle was observed at higher DC bias. The parameters related to kinetic and membrane properties were discussed.
Resumo:
The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.
Polarization and correlation phenomena in the radiative electron capture by bare highly-charged ions
Resumo:
In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustauschprozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theoretisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differentiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben. In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations– und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radiativ in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekombinationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestimmung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts– und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls. Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den 2p3/2–Zustand des nackten Ions und anschließendem Lyman–1–Zerfall (2p3/2 ! 1s1/2). Im Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–1 Zerfalls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und Experiment beim Alignment des 2p3/2–Zustands. Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakteristischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korrelationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfachsten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions und beim anschließenden Lyman–1–Übergang durchgeführt. Wie bereits erwähnt, hängt die Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombinationsphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls bzw. der einfallenden Elektronen.
Resumo:
Power transformers are one of the most important and costly equipment in power generation, transmission and distribution systems. Current average age of transformers in Australia is around 25 years and there is a strong economical tendency to use them up to 50 years or more. As the transformers operate, they get degraded due to different loading and environmental operating stressed conditions. In today‘s competitive energy market with the penetration of distributed energy sources, the transformers are stressed more with minimum required maintenance. The modern asset management program tries to increase the usage life time of power transformers with prognostic techniques using condition indicators. In the case of oil filled transformers, condition monitoring methods based on dissolved gas analysis, polarization studies, partial discharge studies, frequency response analysis studies to check the mechanical integrity, IR heat monitoring and other vibration monitoring techniques are in use. In the current research program, studies have been initiated to identify the degradation of insulating materials by the electrical relaxation technique known as dielectrometry. Aging leads to main degradation products like moisture and other oxidized products due to fluctuating thermal and electrical loading. By applying repetitive low frequency high voltage sine wave perturbations in the range of 100 to 200 V peak across available terminals of power transformer, the conductive and polarization parameters of insulation aging are identified. An in-house novel digital instrument is developed to record the low leakage response of repetitive polarization currents in three terminals configuration. The technique is tested with known three transformers of rating 5 kVA or more. The effects of stressing polarization voltage level, polarizing wave shapes and various terminal configurations provide characteristic aging relaxation information. By using different analyses, sensitive parameters of aging are identified and it is presented in this thesis.
Resumo:
The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (similar to 150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of induced strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena. (C) 2014 AIP Publishing LLC.
Preferential polarization and its reversal in polycrystalline BiFeO3/La0.5Sr0.5CoO3 heterostructures
Resumo:
Polycrystalline BiFeO3 thin films were grown on La0.5Sr0.5CoO3 buffered Pt (200)/TiO2/SiO2/Si substrates under different oxygen partial pressures (10, 25, 50 and 100 mTorr) by puked laser ablation. Piezo-response Force Microscopy and Piezo-Force Spectroscopy have shown that all the films are ferroelectric in nature with locally switchable domains. It has also revealed a preferential downward domain orientation in as-grown films grown under lower oxygen partial pressure (10 and 25 mTorr) with a reversal of preferential domain orientation as the oxygen partial pressure is increased to 100 mTorr during laser ablation. Such phenomena are atypical of multi-grained polycrystalline ferroelectric films and have been discussed On the basis of detect formation with changing growth conditions. For the 50 mTorr grown film, asymmetric domain stability and retention during write-read studies has been observed which is attributed to grain-size-related defect concentration, affecting pinning centres that inhibit domain wall motion. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
An ultrafast transient population grating induced by a (1+1)-dimensional, ultrashort dipole soliton is demonstrated by solving the full-wave Maxwell-Bloch equations. The number of lines and the period of the grating can be controlled by the beam waist and the area of the pulse. Of interest is that a polarization grating is produced. A coherent control scheme based on these phenomena can be contemplated as ultrafast transient grating techniques.
Resumo:
Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.
The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.
Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.
Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.
Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.
Resumo:
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.
Resumo:
In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.
Resumo:
This article compares the efficiency of induced polarization (IP) and resistivity in characterizing a contamination plume due to landfill leakage in a typical tropical environment. The resistivity survey revealed denser electrical current flow that induced lower resistivity values due to the high ionic content. The increased ionic concentration diminished the distance of the ionic charges close to the membrane, causing a decrease in the IP phenomena. In addition, the self-potential (SP) method was used to characterize the preferential flow direction of the area. The SP method proved to be effective at determining the flow direction; it is also fast and economical. In this study, the resistivity results were better correlated with the presence of contamination (lower resistivity) than the IP (lower chargeability) data.
Resumo:
This article compares the efficiency of induced polarization (IP) and resistivity in characterizing a contamination plume due to landfill leakage in a typical tropical environment. The resistivity survey revealed denser electrical current flow that induced lower resistivity values due to the high ionic content. The increased ionic concentration diminished the distance of the ionic charges close to the membrane, causing a decrease in the IP phenomena. In addition, the self-potential (SP) method was used to characterize the preferential flow direction of the area. The SP method proved to be effective at determining the flow direction; it is also fast and economical. In this study, the resistivity results were better correlated with the presence of contamination (lower resistivity) than the IP (lower chargeability) data.