891 resultados para PLC and SCADA programming
Resumo:
In the last years, digital controllers became a very interesting alternative (low costs and higher accuracy) to the analogue or to hydrodynamic traditional controllers in water supply canal automation, in order to match water supply to water demands. This kind of hydraulic systems needs particular research for control applications because they are big scale systems, open and characterized by big delays and great inertia. This paper presents several digital control modes tested in an experimental canal that will be used as a research platform on the automatic canal control domain. The canal operation and their control modes selection are supervised by a SCADA system developed and configured for this particular canal.
Resumo:
Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.
The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.
The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.
The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.
Resumo:
[EN]This research had as primary objective to model different types of problems using linear programming and apply different methods so as to find an adequate solution to them. To achieve this objective, a linear programming problem and its dual were studied and compared. For that, linear programming techniques were provided and an introduction of the duality theory was given, analyzing the dual problem and the duality theorems. Then, a general economic interpretation was given and different optimal dual variables like shadow prices were studied through the next practical case: An aesthetic surgery hospital wanted to organize its monthly waiting list of four types of surgeries to maximize its daily income. To solve this practical case, we modelled the linear programming problem following the relationships between the primal problem and its dual. Additionally, we solved the dual problem graphically, and then we found the optimal solution of the practical case posed through its dual, following the different theorems of the duality theory. Moreover, how Complementary Slackness can help to solve linear programming problems was studied. To facilitate the solution Solver application of Excel and Win QSB programme were used.
Resumo:
Thomas, L., Ratcliffe, M., and Robertson, A. 2003. Code warriors and code-a-phobes: a study in attitude and pair programming. SIGCSE Bull. 35, 1 (Jan. 2003), 363-367.
Resumo:
Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.
Resumo:
Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Γ-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to “factored” models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (MDPSTs), that unifies the fields of probabilistic and “nondeterministic” planning in artificial intelligence research.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
The premotor theory of attention claims that attentional shifts are triggered during response programming, regardless of which response modality is involved. To investigate this claim, event-related brain potentials (ERPs) were recorded while participants covertly prepared a left or right response, as indicated by a precue presented at the beginning of each trial. Cues signalled a left or right eye movement in the saccade task, and a left or right manual response in the manual task. The cued response had to be executed or withheld following the presentation of a Go/Nogo stimulus. Although there were systematic differences between ERPs triggered during covert manual and saccade preparation, lateralised ERP components sensitive to the direction of a cued response were very similar for both tasks, and also similar to the components previously found during cued shifts of endogenous spatial attention. This is consistent with the claim that the control of attention and of covert response preparation are closely linked. N1 components triggered by task-irrelevant visual probes presented during the covert response preparation interval were enhanced when these probes were presented close to cued response hand in the manual task, and at the saccade target location in the saccade task. This demonstrates that both manual and saccade preparation result in spatially specific modulations of visual processing, in line with the predictions of the premotor theory.
Resumo:
Background Mothers' self-reported stroking of their infants over the first weeks of life modifies the association between prenatal depression and physiological and emotional reactivity at 7 months, consistent with animal studies of the effects of tactile stimulation. We now investigate whether the effects of maternal stroking persist to 2.5 years. Given animal and human evidence for sex differences in the effects of prenatal stress we compare associations in boys and girls. Method From a general population sample of 1233 first-time mothers recruited at 20 weeks gestation we drew a random sample of 316 for assessment at 32 weeks, stratified by reported inter-partner psychological abuse, a risk indicator for child development. Of these mothers, 243 reported at 5 and 9 weeks how often they stroked their infants, and completed the Child Behavior Checklist (CBCL) at 2.5 years post-delivery. Results There was a significant interaction between prenatal anxiety and maternal stroking in the prediction of CBCL internalizing (p = 0.001) and anxious/depressed scores (p < 0.001). The effects were stronger in females than males, and the three-way interaction prenatal anxiety × maternal stroking × sex of infant was significant for internalizing symptoms (p = 0.003). The interactions arose from an association between prenatal anxiety and internalizing symptoms only in the presence of low maternal stroking. Conclusions The findings are consistent with stable epigenetic effects, many sex specific, reported in animal studies. While epigenetic mechanisms may be underlying the associations, it remains to be established whether stroking affects gene expression in humans.