742 resultados para PLATELETS
Resumo:
Aim To evaluate the effectiveness of novel nanohybrids, composed of silver nanoparticles and nanoscale silicate platelets, to clear Pseudomonas aeruginosa biofilms. Materials & methods The nanohybrids were manufactured from an in situ reduction of silver salts in the silicate platelet dispersion, and then applied to biofilms in vitro and in vivo. Results In reference to the biocidal effects of gentamycin, the nanohybrids mitigated the spreading of the biofilms, and initiated robust cell death and exfoliation from the superficial layers of the biofilms in vitro. In vivo, the nanohybrids exhibited significant therapeutic effects by eliminating established biofilms from infected corneas and promoting the recovery of corneal integrity. Conclusion All of the evaluations indicate the high potency of the newly developed silver nanoparticle/nanoscale silicate platelet nanohybrids for eliminating biofilms.
Resumo:
We demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio similar to 5000) above a critical volume fraction of 3.75 x 10(-4) with a percolation exponent of 2.4 +/- 0.1. The viscoelastic moduli of the gel at rest measured as a function of time indicate the absence of structural evolution of the 3D percolated network of disks. However a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (sigma) is imposed in creep experiments. We construct a shear diagram (sigma vs. volume fraction phi) and the critical stress above which shear rejuvenation occurs is identified as the yield stress sigma(y) of the gel. The minimum steady state shear rate (gamma) over dot(m) obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below (gamma) over dot(m). A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a Couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid.
Resumo:
Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.
Modelling (100) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach
Resumo:
An L-amino acid oxidase (LAAO), NA-LAAO, was purified from the venom of Naja atra. Its N-terminal sequence shows great similarity with LAAOs from other snake venoms. NA-LAAO dose-dependently induced aggregation of washed human platelets. However, it had n
Resumo:
In polystyrene-block-poly(ethylene oxide) thin square platelets can be obtained via fast solvent evaporation by controlling the tethering density (0.08 < sigma < 0.11). The tethering density of the brushes is proportional to the thickness of the PEO crystal and increases with increasing initial solution heating temperature (T-i). When T-i < T-m, where T-m is the melting point of PEO, brushes with microphase-separated structures are observed. The formation of microphase-separated brushes depends on two factors: the strong incompatibility between PS and noncrystalline PEO chains (attached to the crystalline PEO) and the weak interaction between PS-PS brushes.
Resumo:
Lamellar platelets of triblock copolymers grown in dilute toluene solution with trace amounts of water can be used as templates for tethered diblock copolymer chain preparation and analysis. Polystyrene-bpoly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two different block fractions were used as model templates to generate tethered P2VP-b-PS chains on the platelet basal surfaces. In toluene solution the aggregation states of PS-b-P2VP-b-PEO were sensitive to the water content in the solution. For toluene with trace amount of water, spherical micelles were formed in the early stage and large square platelets would gradually grow from these spherical micelles. The hydrogen bonding between water and EO units was responsible for the formation of micelles and subsequent square platelets in the solution. Tethered P2VP-b-PS chains on basal surface of PEO platelets could be regarded as diblock copolymer brushes and the density (or: 0.086-0.36) and height (d: 3.5-14.3 nm) of these tethered chains could be easily modulated by changing the crystallization condition and/ or the molecular weight of each block. The tethered P2VP-b-PS chains were responsive to different solvent vapor.
Resumo:
Platelets release glutamate upon activation and are an important clearance system of the amino acid from blood, through high-affinity glutamate uptake, similar to that described in brain synaptosomes. Since platelet glutamate uptake is decreased in neurodegenerative disorders, we performed a morphological and molecular characterization of platelet glutamate transporters. The three major brain glutamate transporters EAAT1, EAAT2 and EAAT3 are expressed in platelets, with similar molecular weight, although at lower density than brain. A Na(+)-dependent-high-affinity glutamate uptake was competitively inhibited by known inhibitors but not by dihydrokainic acid, suggesting platelet EAAT2 does not play a major role in glutamate uptake at physiological conditions. We observed decreased glutamate uptake V(max), without modification of transporter affinity, in aging, which could be linked to the selective decrease of EAAT1 expression and mRNA. Moreover, in AD patients we found a further EAAT1 reduction compared to age-matched controls, which could explain the decrease of platelet uptake previously described. Platelet glutamate transporters may be used as peripheral markers to investigate the role of glutamate in patients with neuropsychiatric disorders.