999 resultados para PLANKTONIC HYDROIDS
Resumo:
Medusae and polyps of Clytia are abundantly found in coastal marine environments and one species in the genus-Clytia hemisphaerica (Linnaeus, 1767)-has become an important experimental model. Yet, only 10 species in the genus have had their life cycle investigated. Most species of Clytia are also poorly described, and detailed life cycle and morphological studies are needed for accurate species-level identifications. Here, we investigated the life cycle of Clytia elsaeoswaldae Stechow, 1914, a species described for the tropical western Atlantic and subsequently considered conspecific to the nearly-cosmopolitan species Clytia gracilis (Sars, 1850) and Clytia hemisphaerica, originally described for the temperate North Atlantic. Based on observations of mature medusae and multiple colonies from southeastern Brazil and the U. S. Virgin Islands (type locality), our results show that C. elsaeoswaldae is morphologically distinct from C. gracilis and C. hemisphaerica. The morphological results are corroborated by a multigene phylogenetic analysis of the genus Clytia, which shows that C. gracilis-like species form a polyphyletic group of several species. These results suggest that the nearly-cosmopolitan distribution attributed to some species of Clytia may be due to the non-recognition of morphologically similar species with more restricted ranges.
Resumo:
Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S. cymosum must be taken into account.
Resumo:
We reconstructed Middle Pleistocene surface hydrography in the western South Atlantic based on planktonic foraminiferal assemblages, modern analog technique and Globorotalia truncatulinoides isotopic ratios of core SP1251 (38 degrees 29.7`S / 53 degrees 40.7`W / 3400 m water depth). Biostratigraphic analysis suggests that sediments were deposited between 0.3 and 0.12 Ma and therefore correlate to Marine Isotopic Stage 6 or 8. Faunal assemblage-based winter and summer SST estimates suggest that the western South Atlantic at 38 degrees S was 4-6 degrees C colder than at present, within the expected range for a glacial interval. High relative abundances of subantarctic species, particularly the dominance of Neogloboquadrina pachyderma (left), support lower than present SSTs throughout the recorded period. The oxygen isotopic composition of G. truncatulinoides suggests a northward shift of the Brazil-Malvinas Confluence Zone and of the associated mid-latitude frontal system during this Middle Pleistocene cold period, and a stronger than present influence of superficial subantarctic waters and lowering in SSTs at our core site during the recorded Middle Pleistocene glacial.
Resumo:
Ciências da Terra(UNL) Nº 15, pp. 199-208
Resumo:
New data on the planktonic foraminifera from the Upper Miocene Cacela Formation and Mem Moniz spongoliths are presented. The coiling type of Globorotalia menardii from Cacela and Quelfes and the occurrence at Quelfes of G. miotumida allow correlation with the bio-events I to 3 (7,512 to 7,24 Ma; Sierro et al., 1993; 2001) that have been recognized in the Guadalquivir Basin (Spain). The presence of Neogloboquadrina acostaensis and N. humerosa at Mem Moniz points out to the Upper Miocene (Tortonian, upper N16, or even NI7). Mem Moniz spongoliths are correlated with the Cacela Formation. Some 87Sr/86Sr isotopic ages of mollusc or foraminifera shells don't fit well with finer biostratigraphic record and present wide error margins.
Resumo:
Chlorine is the most commonly used agent for general disinfection, particularly for microbial growth control in drinking water distribution systems. The goals of this study were to understand the effects of chlorine, as sodium hypochlorite (NaOCl), on bacterial membrane physicochemical properties (surface charge, surface tension and hydrophobicity) and on motility of two emerging pathogens isolated from drinking water, Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. The effects of NaOCl on the control of single and dual-species monolayer adhered bacteria (2 h incubation) and biofilms (24 h incubation) was also assessed. NaOCl caused significant changes on the surface hydrophobicity and motility of A. calcoaceticus, but not of S. maltophilia. Planktonic and sessile S. maltophilia were significantly more resistant to NaOCl than A. calcoaceticus. Monolayer adhered co-cultures of A. calcoaceticus-S. maltophilia were more resilient than the single species. Oppositely, dual species biofilms were more susceptible to NaOCl than their single species counterparts. In general, biofilm removal and killing demonstrated to be distinct phenomena: total bacterial viability reduction was achieved even if NaOCl at the higher concentrations had a reduced removal efficacy, allowing biofilm reseed. In conclusion, understanding the antimicrobial susceptibility of microorganisms to NaOCl can contribute to the design of effective biofilm control strategies targeting key microorganisms, such as S. maltophilia, and guarantying safe and high-quality drinking water. Moreover, the results reinforce that biofilms should be regarded as chronic contaminants of drinking water distribution systems and accurate methods are needed to quantify their presence as well as strategies complementary/alternative to NaOCl are required to effectively control the microbiological quality of drinking water.
Resumo:
Freshwater Sponges, Hydroids & Polyzoa
Resumo:
pt.2
Resumo:
pt.1
Resumo:
v.20:no.3(1939)
Resumo:
Seven species of aloricate planktonic ciliates were identified using protargol staining. Choreotrichida: Strombidinopsidae, Strombidinopsis elongata Song & Bradbury, 1998; Strobiliidae, Strobilidium epacrum Lynn & Montagnes, 1988 and Strombidiida: Strombidiidae, Strombidium capitatum (Leegaard, 1915) Kahl, 1932; S. emergens (Leegaard, 1915) Kahl, 1932; S. acutum Leegaard, 1915; S. dalum Lynn, Montagnes & Small, 1988 and Cyrtostrombidium longisomum Lynn & Gilron, 1993; they were collected from the inner zone of the Bahía Blanca estuary in the southern region of the Buenos Aires province, Argentina. These species represent new records to South America (Argentina).
Resumo:
The specific composition and abundance variation of the ciliate community from a wastewater discharge zone in the Bahía Blanca estuary, Argentina, were studied all throughout a year, from June 1995 to May 1996. The polluted area exhibited high values of particulate organic matter and nutrients, particularly phosphates. Aloricate ciliates were represented by 15 species belonging to the genera Strombidium Claparède & Lachmann, 1859; Strombidinopsis Kent, 1881; Cyrtostrombidium Lynn & Gilron, 1993; Strobilidium Schewiakoff, 1983; Lohmmanniella Leegaard, 1915 and Tontonia Fauré-Fremiet, 1914. Tintinnids were represented by nine species belonging to the genera Tintinnidium Kent, 1881, Tintinnopsis Stein, 1867 and Codonellopsis Jörgensen, 1924. The total abundance of aloricate ciliates reached a peak of 1,800 ind. 1-1 and the total abundance of tintinnids reached a peak of 9,400 ind. 1-1. Tintinnidium balechi Barría de Cao, 1981 was the most abundant ciliate in the community. Considerations on the presence and abundance of ciliates are made in relation to physicochemical and biochemical parameters.
Resumo:
During six consecutive months, sampling were made at three points located on Governador Island and three on Paquetá Island in Guanabara Bay, Rio de Janeiro, Brazil. Material was collected from dock pilings and rocks in the intertidal zone. In these samples, five species belonging to three families, Corynidae, Kirchenpaueriidae and Campanulariidae, were identified. The campanulariid species Obelia dichotoma Linnaeus, 1758, dominated at nearly all points sampled. The small number of species obtained in this survey is attributed to the intense pollution in the bay, which borders the second-largest industrial complex and the second-largest demographic center of Brazil.
Resumo:
A high-resolution micropalaeontological study, combined with geochemical and sedimentological analyses was performed on the Tiefengraben, Schlossgraben and Eiberg sections (Austrian Alps) in order to characterize sea-surface carbonate production during the end-Triassic crisis. At the end-Rhaetian, the dominant calcareous nannofossil Prinsiosphaera triassica shows a decrease in abundance and size and this is correlated with a increase in delta O-18 and a gradual decline in delta C-13(carb) values. Simultaneously, benthic foraminiferal assemblages show a decrease in diversity and abundance of calcareous taxa and a dominance of infaunal agglutinated taxa. The smaller size of calcareous nannofossils disturbed the vertical export balance of the biological carbon pump towards the sea-bottom, resulting in changes in feeding strategies within the benthic foraminiferal assemblages from deposit feeders to detritus feeders and bacterial scavengers. These micropalaeontological data combined with geochemical proxies suggest that changes in seawater chemistry and/or cooling episodes might have occurred in the latest Triassic, leading to a marked decrease of carbonate production. This in turn culminated in the quasi-absence of calcareous nannofossils and benthic foraminifers in the latest Triassic. The aftermath (latest Triassic earliest Jurassic) was characterised by abundance peaks of ``disaster'' epifaunal agglutinated foraminifera Trochammina on the sea-floor. Central Atlantic Magmatic Province (CAMP) paroxysmal activity, superimposed on a major worldwide regressive phase, is assumed to be responsible for a deterioration in marine palaeoenvironments. CAMP sulfuric emissions might have been the trigger for cooling episodes and seawater acidification leading to disturbance of the surface carbonate production at the very end-Triassic.
Resumo:
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains.