994 resultados para PLANKTONIC COPEPODS
Resumo:
The main purpose of the Study is to outline the main distributional features of the species of the calonoid copepod family seolecithricidae in the Indian Ocean Expedition collections and to distinguish and describe their niches. In the present thesis 27 species belonging to 7 genera were identified of which 2 were new records from the Indian Ocean and one was described as a new species. In addition to the general treatment of the taxonomy, zoogeography and species diversity in relation to various environmental parameters are also attempted
Resumo:
Copepod assemblages from two cascade reservoirs were analyzed during two consecutive years. The upstream reservoir (Chavantes) is a storage system with a high water retention time (WRT of 400 days), and the downstream one (Salto Grande) is a run-of-river system with only 1. 5 days WRT. Copepod composition, richness, abundance, and diversity were correlated with the limnological variables and the hydrological and morphometric features. Standard methods were employed for zooplankton sampling and analysis (vertical 50-μm net hauls and counting under a stereomicroscope). Two hypotheses were postulated and confirmed through the data obtained: (1) compartmentalization is more pronounced in the storage reservoir and determines the differences in the copepod assemblage structure; and (2) the assemblages are more homogeneous in the run-of-river reservoir, where the abundance decreases because of the predominance of washout effects. For both reservoirs, the upstream zone is more distinctive. In addition, in the smaller reservoir the influence of the input from tributaries is stronger (turbid waters). Richness did not differ significantly among seasons, but abundance was higher in the run-of-river reservoir during summer. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
A caracterização da composição de Copepoda planctônicos, na costa do Amapá foi estudada, a partir de amostras coletadas através do programa REVIZEE, durante a Operação Norte IV, em 2001, realizada pelo navio Oceanográfico “Antares”, pertencente à Marinha do Brasil (H-40). A área estudada está inserida na ZEE Norte brasileiro no trecho entre o Cabo Orange e o Delta do rio Parnaíba, enquadrando-se nas seguintes coordenadas geográficas, LAT. 02º 25,92’N e LONG. 049º11,98’W (est. 102); LAT. 03º36,14’N e LONG. 048º24,71’W (est. 107); LAT. 05º32,39’N e LONG. 050º13,11’W (est.130); LAT. 04º23,64’N e LONG. 051º02,58’W (est.134). As coletas foram realizadas através de arrastos verticais com rede de zooplâncton, com malha de 200 μm, dotadas de fluxômetro. Após as coletas, as amostras foram fixadas com formol neutro a 4 %. Também foram coletados os fatores hidrológicos, onde a temperatura da água variou de 23, 72 ºC a 28,87 ºC na plataforma continental, enquanto na região oceânica variou de 12,69 ºC a 28,87 ºC. A salinidade, na plataforma continental, variou 24,00 PSU a 36,42 PSU, e na região oceânica a variação foi de 33,98 PSU a 36,62 PSU. A costa do Amapá foi considerado um ambiente estável, devido as poucas variações de salinidade e temperatura. Foram identificadas 84 espécies de Copepoda, das quais, destacaram-se como as mais freqüentes, Clausocalanus furcatus, Oithona setigera, Paracalanus parvus, Macrosetella gracilis, Oncaea media, Corycaeus speciosus, Farranula gracilis, Subeucalanus pileatus e Paracalanus sp. As altas densidades e dominância ocorreram para as espécies, Nannocalanus minor, Corycaeus (Corycaeus) speciosus, Clausocalanus furcalocalanus pavo, Paracalanus parvus, Parvocalanus crassirostris, Oithona setigera, Macrosetella gracilis, Farranula gracilis, Subcalanus pileatus, Euterpina acutifrons e Oncaea media, consideradas como indicadoras de oligotrofia na área estudada. Dentre estas, a espécie Subeucalanus pileatus foi a que mais se destacou, a qual ocorreu na maioria das estações. A diversidade foi considerada alta na maioria das estações, exceto na estação 127 (considerada baixa), por estar sendo influenciada pela pluma amazônica. Enquanto, a densidade apresentou resultados menores que 100 org.m-³ indicando a região oceânica como um ambiente oligotrófico, e apesar disso, a comunidade de Copepoda encontra-se em grande diversidade na área.
Resumo:
A distribuição espacial e temporal da densidade e biomassa dos copépodos planctônicos Pseudodiaptomus richardi e P. acutus, ao longo de um gradiente de salinidade, foi estudada no Estuário do Rio Caeté (Norte do Brasil) durante os meses de junho e dezembro de 1998 (estação seca) e fevereiro e maio de 1999 (estação chuvosa). A biomassa dos copépodos foi estimada a partir de parâmetros da regressão baseada na relação entre o peso seco e o comprimento do corpo (prossoma) de organismos adultos. O Estuário do Rio Caeté caracterizou-se por uma grande variação espacial e sazonal na salinidade (0,8-37,2). A relação peso-comprimento para ambas as espécies de Pseudodiaptomus foi do tipo exponencial. Os valores de densidade e biomassa oscilaram entre 0,28-46,18 ind. m-3 e 0,0022-0,3507 mg DW. m-3 para P. richardi; e entre 0,01-17,02 ind. m-3 e 0,0005-0,7181 mg DW. m-3 para P. acutus. Os resultados revelaram que a contribuição de P. richardi para a produção secundária no Estuário do Rio Caeté é mais importante na zona liminética que em outras zonas onde foram dominantes os regimes eurihalino-polihalino. Contudo, para P. acutus não foi possível observar de forma clara um padrão de distribuição espacial e temporal para a área estudada.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study was focused on the predation upon microcrustaceans by an invertebrate predator (chaoborid larvae), and vertebrate predators (fish), in two small reservoirs in southeastern Brazil, with and without macrophytes, in two climatic periods (dry and rainy seasons). Chaoborus larvae were sampled in the limnetic zone, as they are scarce in the littoral, and fish in both limnetic and littoral zones. Their diets were evaluated by the analysis of the crop (chaoborid) or stomach contents (fish). Chaoborid larvae consumed the dinoflagellate Peridinium sp. or other algae, rotifers, and planktonic microcrustaceans. The fish species that included microcrustaceans in their diets were juveniles caught in the littoral. Aquatic insects, plant fragments, and detritus were their major dietary items, microcrustaceans representing a minor item. Planktonic copepods contributed more to the diet of chaoborid larvae than planktonic cladocerans. Fish preyed on planktonic microcrustaceans, as well as on benthic and macrophyte-associated species. Microcrustaceans were not heavily preyed on by chaoborid larvae and fish in both reservoirs.
Resumo:
Some ecological attributes of planktonic copepods (composition, diversity, abundance and its relations with limnological variables) were compared in two deep and dendritic reservoirs, 470km from each other, with contrasting water retention time (WRT) and ages of construction. Data were grouped from two different studies: samples were collected monthly between March/00 to February/01, on the Salto Caxias Reservoir (Iguaçu River), and tri-monthly between January/00 to October/01, on the Chavantes Reservoir (Paranapanema River). Eight species of Calanoida and six of Cyclopoida were identified in both reservoirs. The highest richness was observed in Salto Caxias (12 taxa) when compared with Chavantes (8 taxa), and six species were exclusive to Salto Caxias and two from Chavantes. Salto Caxias was studied one year after the construction, consequently with higher nutrients values in this period and showed generally high mean values of Copepoda (nauplius, copepodits and adults) than Chavantes, which is 38 years old. Some parameters as transparency, conductivity, turbidity and total nitrogen were significantly related with copepod abundance. New formation and sufficient long WRT could be an important cause for the highest richness of Calanoida and total abundance of individuals in Salto Caxias Reservoir.
Resumo:
We investigated the influence of nutrient-rich oceanic waters in comparison to the estuarine outflow from Santos Bay (SE Brazil) on copepod abundance and production on the adjacent inner shelf. Zooplankton samples were collected with a Multinet in spring 2005 and in summer 2006. Copepod biomass was derived from length-weight regressions, and growth rates were estimated from empirical models. Altogether, 58 copepod taxa were identified. The highest abundances were due to small-sized organisms including nauplii, oncaeids and copepodids of paracalanids and clausocalanids. Biomass and secondary production mirrored copepod abundance, with Temora copepodids accompanying the above-mentioned taxa as major contributors. The contribution of naupliar biomass and production was low (2.2 and 3.8% of the total, respectively). The influence of the Santos Bay outflow was observed only in spring, when Coastal Water (CW) dominated at the study site; whereas in summer the inner shelf was occupied by CW in the surface layer and the oceanic South Atlantic Central Water (SACW) in the bottom layer. The SACW intrusion had more of an influence for the increase in copepod production than the Santos Bay plume. The distribution and dynamics of the oceanic water masses seemed to be the most important influence on copepod diversity and production at this subtropical site.
Resumo:
We analysed the seasonal distribution of the zooplankton community in an anthropogenically impacted area (Paranagua Bay) and a non-impacted area (Laranjeiras Bay) of the Paranagua Bay Estuarine Complex. Large phytoplankton (>50 mu m) and zooplankton were collected every two months, between August 2003 and June 2004. The phytoplankton community was numerically dominated by diatoms (78%) and dinoflagellates (19%). Zooplankton abundance varied between 670 and 100,716 individuals m(-3), with a dominance of copepods, mainly the calanoids Acartia lilljeborgii, Acartia tonsa and Pseudodiaptomus acutus. A clear seasonal pattern was observed: copepods were significantly more abundant during the rainy than in the dry season. Significant differences in abundance between the two bays were detected only for cirripede larvae, which were more abundant in Paranagua Bay. This lack of difference between the two areas was probably a consequence of the water circulation along the estuary, which may have diluted and dispersed the pollutants from Paranagua Bay to other areas of the estuary.
Resumo:
This study was focused on the predation upon microcrustaceans by an invertebrate predator (chaoborid larvae), and vertebrate predators (fish), in two small reservoirs in southeastern Brazil, with and without macrophytes, in two climatic periods (dry and rainy seasons). Chaoborus larvae were sampled in the limnetic zone, as they are scarce in the littoral, and fish in both limnetic and littoral zones. Their diets were evaluated by the analysis of the crop (chaoborid) or stomach contents (fish). Chaoborid larvae consumed the dinoflagellate Peridinium sp. or other algae, rotifers, and planktonic microcrustaceans. The fish species that included microcrustaceans in their diets were juveniles caught in the littoral. Aquatic insects, plant fragments, and detritus were their major dietary items, microcrustaceans representing a minor item. Planktonic copepods contributed more to the diet of chaoborid larvae than planktonic cladocerans. Fish preyed on planktonic microcrustaceans, as well as on benthic and macrophyte-associated species. Microcrustaceans were not heavily preyed on by chaoborid larvae and fish in both reservoirs.
Resumo:
The Sesame dataset contains mesozooplankton data collected during October 2008 in the Levantine Basin (between 33.20 and 36.50 N latitude and between 30.99 and 31.008 E longitude). Mesozooplankton samples were collected by using a WP-2 closing net with 200 µm mesh size during day hours (07:00-18:00). Samples were taken from 0-50, 50-100, 100-200 m layer at 5 stations in Levantine Basin The dataset includes samples analyzed for mesozooplankton species composition, abundance and total mesozooplankton biomass. The entire sample (1/2) or an aliquot was analyzed under the binocular microscope. Minimum 500 individuals of mesozooplankton were identified and numerated at higher taxonomic level. Taxonomic identification was done at the METU- Institute of Marine Sciences by Alexandra Gubanova,Tuba Terbiyik using the relevant taxonomic literatures. Mesozooplankton abundance and biomass were estimated by Zahit Uysal and Yesim Ak Örek. Specification via marine planktonic copepods database (http://copepodes.obs-banyuls.fr/en/).
Resumo:
The Arabian Sea and the Bay of Bengal are both highly dynamic ecosystems, due to the seasonally reversing monsoon winds, but the processes affecting the mesozooplankton community remain poorly understood. These are important basins exhibiting enhanced biological production as a result of upwelling, winter cooling and other episodic events such as eddies and gyres. Zooplankters are primarily the prey for almost all fish larvae. Seasonal changes in the biogeochemical processes can strongly affect zooplankton density and distribution, which in turn, strongly affect the larval growth, and consequently, the pelagic fish recruitment. It is clear that plankton biomass and biogeochemical fluxes are not in steady state. Acoustic data on mesozooplankton abundance suggests that they also exist in the mesopelagic zone. Earlier studies were confined only to the upper 200 m and hence the structure of mesozooplankton community in the deeper layers was not well known. Copepods are the dominant mesoplankton group, and therefore the majority of the studies were focused on them. The planktonic ostracods are the second major crustacean group and at times, their swarms can outnumber all other planktonic groups. The understanding of the community structure of the ostracods is essential to establish their role in the marine food web. Mesozooplankton is responsible for the vertical flux of organic matter produced by phytoplankton and is assumed to be equivalent to new production (Eppley & Peterson, 1979). Since the fate of newly produced organic matter depends upon their consumers, the zooplankton biomass must be estimated in size fractions or taxonomic components to understand the vertical flux of organic carbon. It is thus important to update our knowledge on different groups of zooplankton on the basis of seasonal and temporal distribution. The distribution in space and time is essential for modeling the carbon cycling that structure the marine ecosystems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An analysis was made of composition and content of nutrients, salts, particulate and dissolved organic matter, and various plankton groups in a series of samples collected by a 140-liter sampling bottle to depth up to 150 m at 4 equatorial stations between 97° and 154°W. Large and small phytoplankton, bacteria (aggregated and dispersed), heterotrophic flagellates, infusorians, radiolarians, foraminifers, fine filter-feeders, small and large, mostly herbivorous copepods, cyclopoids, predatory calanoids, and other predators were investigated separately. Trophic relations between these elements are established from personal and published data, and rate of their metabolism and some other physiological parameters are determined. Such functional characteristics as extent of satisfaction of food requirements of organisms belonging to various trophic groups, intensity of trophic relations, balance between production and consumption by individual elements of the community, ecological efficiency, and net and specific production of the groups distinguished, of individual trophic levels, of total zooplankton, and of the community as a whole are calculated. Variations of these characteristics along the equator with decreasing upwelling intensity are examined and their possible causes and mechanisms are discussed.