78 resultados para PLACENTATION
Resumo:
Background: Sigmodontinae, known as ""New World rats and mice,"" is a large subfamily of Cricetidae for which we herein provide the first comprehensive investigation of the placenta. Methods: Placentas of various gestational ages ranging from early pregnancy to near term were obtained for five genera, i.e. Necromys, Euryoryzomys, Cerradomys, Hylaeamys, and Oligoryzomys. They were investigated by means of histology, immunohistochemistry, a proliferation marker, DBA-lectin staining and transmission electron microscopy. Results: The chorioallantoic placenta was organized in a labyrinthine zone, spongy zone and decidua and an inverted yolk sac persisted until term. The chorioallantoic placenta was hemotrichorial. The interhemal barrier comprised fetal capillary endothelium and three layers of trophoblast, an outermost, cellular layer and two syncytial ones, with interspersed trophoblast giant cells (TGC). In addition, accumulations of TGC occurred below Reichert's membrane. The junctional zone contained syncytial trophoblast, proliferative cellular trophoblast, glycogen cells and TGC that were situated near to the maternal blood channels. In three of the genera, TGC were also accumulated in distinct areas at the placental periphery. PAS-positive glycogen cells derived from the junctional zone invaded the decidua. Abundant maternal uNK cells with positive response to PAS, vimentin and DBA-lectin were found in the decidua. The visceral yolk sac was completely inverted and villous. Conclusion: The general aspect of the fetal membranes in Sigmodontinae resembled that found in other cricetid rodents. Compared to murid rodents there were larger numbers of giant cells and in some genera these were seen to congregate at the periphery of the placental disk. Glycogen cells were found to invade the decidua but we did not identify trophoblast in the walls of the deeper decidual arteries. In contrast these vessels were surrounded by large numbers of uNK cells. This survey of wild-trapped specimens from five genera is a useful starting point for the study of placentation in an important subfamily of South American rodents. We note, however, that some of these rodents can be captive bred and recommend that future studies focus on the study of time dated pregnancies.
Resumo:
Background: Placentas of guinea pig-related rodents are appropriate animal models for human placentation because of their striking similarities to those of humans. To optimize the pool of potential models in this context, it is essential to identify the occurrence of characters in close relatives. Methods: In this study we first analyzed chorioallantoic placentation in the prea, Galea spixii, as one of the guinea pig's closest relatives. Material was collected from a breeding group at the University of Mossoro, Brazil, including 18 individuals covering an ontogenetic sequence from initial pregnancy to term. Placentas were investigated by means of histology, electron microscopy, immunohistochemistry (vimentin, alpha-smooth muscle actin, cytokeration) and proliferation activity (PCNA). Results: Placentation in Galea is primarily characterized by an apparent regionalization into labyrinth, trophospongium and subplacenta. It also has associated growing processes with clusters of proliferating trophoblast cells at the placental margin, internally directed projections and a second centre of proliferation in the labyrinth. Finally, the subplacenta, which is temporarily supplied in parallel by the maternal and fetal blood systems, served as the center of origin for trophoblast invasion. Conclusion: Placentation in Galea reveals major parallels to the guinea pig and other caviomorphs with respect to the regionalization of the placenta, the associated growing processes, as well as trophoblast invasion. A principal difference compared to the guinea pig occurred in the blood supply of the subplacenta. Characteristics of the invasion and expanding processes indicate that Galea may serve as an additional animal model that is much smaller than the guinea pig and where the subplacenta partly has access to both maternal and fetal blood systems.
Resumo:
Evidence from several sources supports a close phylogenetic relationship between elephants and sirenians. To explore whether this was reflected in similar placentation, we examined eight delivered placentae from the Amazonian manatee using light microscopy and immunohistochemistry. In addition, the fetal placental circulation was described by scanning electron microscopy of vessel casts. The manatee placenta was zonary and endotheliochorial, like that of the elephant. The interhaemal barrier comprised maternal endothelium, cytotrophoblasts and fetal endothelium. We found columnar trophoblast beneath the chorionic plate and lining lacunae in this region, but there was no trace in the term placenta of haemophagous activity. The gross anatomy of the cord and fetal membranes was consistent with previous descriptions and included a four-chambered allantoic sac, as also found in the elephant and other afrotherians. Connective tissue septae descended from the chorionic plate and carried blood vessels to the labyrinth, where they gave rise to a dense capillary network. This appeared to drain into shorter vessels near the chorionic plate. The maternal vasculature could not be examined in the same detail, but maternal capillaries ran rather straight and roughly parallel to the fetal ones. Overall, there is a close resemblance in placentation between the manatee and the elephant.
Resumo:
v.35:no.4(1956)
Resumo:
v.35:no.2(1953)
Resumo:
Afrotheria, one of four mammalian superorders, comprises elephants, sea cows, hyraxes, aardvark, elephant shrews, tenrecs and golden moles. Their placentas either form an equatorial band or are discoid in shape. The interhemal region, separating fetal and maternal blood, is endotheliochorial in elephants, aardvark and possibly the sea cows, but hemochorial in the remaining orders. There is a secondary epitheliochorial placenta in elephant shrews while a similar structure in tenrecs erodes maternal tissues. Specialized hemophagous regions are a striking characteristic of some of these placentas yet absent in hyraxes, elephant shrews, and golden moles. It is possible that the common ancestor of the Afrotheria had an endotheliochorial placenta. Establishment of a hemochorial condition, as seen in rock hyraxes, elephant shrews, tenrecs, and golden moles, would be a more recent development. The elephant, manatee, and aardvark all have circumferential placentas. Thus the formation of a discoid placenta with a more or less extensive secondary placenta in elephant shrews and tenrecs would also be a derived state.
Resumo:
Embryonic development in nonmammalian vertebrates depends entirely on nutritional reserves that are predominantly derived from vitellogenin proteins and stored in egg yolk. Mammals have evolved new resources, such as lactation and placentation, to nourish their developing and early offspring. However, the evolutionary timing and molecular events associated with this major phenotypic transition are not known. By means of sensitive comparative genomics analyses and evolutionary simulations, we here show that the three ancestral vitellogenin-encoding genes were progressively lost during mammalian evolution (until around 30-70 million years ago, Mya) in all but the egg-laying monotremes, which have retained a functional vitellogenin gene. Our analyses also provide evidence that the major milk resource genes, caseins, which have similar functional properties as vitellogenins, appeared in the common mammalian ancestor approximately 200-310 Mya. Together, our data are compatible with the hypothesis that the emergence of lactation in the common mammalian ancestor and the development of placentation in eutherian and marsupial mammals allowed for the gradual loss of yolk-dependent nourishment during mammalian evolution
Resumo:
The mammalian placenta exhibits striking interspecific morphological variation, yet the implications of such diversity for reproductive strategies and fetal development remain obscure. More invasive hemochorial placentas, in which fetal tissues directly contact the maternal blood supply, are believed to facilitate nutrient transfer, resulting in higher fetal growth rates, and to be a state of relative fetal advantage in the evolution of maternal-offspring conflict. The extent of interdigitation between maternal and fetal tissues has received less attention than invasiveness but is also potentially important because it influences the surface area for exchange. We show that although increased placental invasiveness and interdigitation are both associated with shorter gestations, interdigitation is the key variable. Gestation times associated with highly interdigitated labyrinthine placentas are 44% of those associated with less interdigitated villous and trabecular placentas. There is, however, no relationship between placental traits and neonatal body and brain size. Hence, species with more interdigitated placentas produce neonates of similar body and brain size but in less than half the time. We suggest that the effects of placental interdigitation on growth rates and the way that these are traded off against gestation length may be promising avenues for understanding the evolutionary dynamics of parentoffspring conflict. Keywords: placenta, parent-offspring conflict, life history, brain evolution, reproductive strategies, gestation.
Resumo:
During embryo implantation, invasive trophoblast cells mediate embryo invasion into the decidualized stroma, forming a rich network of lacunae that connect the embryonic tissues to the maternal blood vessels. Placentation is probably guided by the composition and organization of the endometrial extracellular matrix. Certain pathological conditions that occur during pregnancy, including diabetes, have been linked to abnormal placental morphology and consequent fetal morbidity. We used immunoperoxidase techniques to identify members of the collagen, proteoglycan and glycoprotein families in the various compartments of the rat placenta and to determine whether experimentally induced diabetes affects placental morphology and alters the distribution of these molecules during pregnancy. Single injections of alloxan (40 mg kg(-1) i.v.) were used to induce diabetes on day 2 of pregnancy in Wistar rats. Placentas were collected on days 14, 17, and 20. Type I and III collagen, as well as the proteoglycans decorin and biglycan, were found to be distributed throughout the placentas of control and diabetic rats. In both groups, laminin expression decreased at the end of pregnancy. In contrast, fibronectin was detected in the labyrinth region of diabetic rats at all gestational stages studied, whereas it was detected only at term pregnancy in the placentas of control rats. These results show for the first time that some extracellular matrix molecules are modulated during placental development. However, as diabetic rats presented increased fibronectin deposition exclusively in the labyrinth region, we speculate that diabetes alters the microenvironment at the maternal-fetal interface, leading to developmental abnormalities in the offspring.
Resumo:
Rock cavies are rodents found in the semi-arid caatinga of Brazil. We studied the structure of the rock cavy placenta by light and transmission electron microscopy. The exchange area of the labyrinth was organized in lobes separated by interlobular areas. The interhaemal barrier was syncytial haemomonochorial. The syncytiotrophoblast had recesses in the basal membrane and some invaginations of the apical membrane, but transtrophoblastic channels could not be found. The interlobular regions comprised syncytiotrophoblast, enclosing maternal venous blood channels, and cytotrophoblast. There was a prominent subplacenta composed of cytotrophoblast and syncytiotrophoblast. Microvilli projected into spaces between the cytotrophoblasts and into lacunae within the syncytiotrophoblast. The yolk sac epithelium exhibited coated pits, endocytotic vesicles and larger vacuoles, consistent with a role in protein uptake from the uterine lumen. Tight junctions between these cells provided a barrier to diffusion by the intercellular route. The reproductive biology of the rock cavy differs from other members of the family, including the guinea pig, but the architecture of the placenta remains remarkably constant. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
To elucidate the morphological differences between placentas from normal and cloned cattle pregnancies reaching term, the umbilical cord, placentomes and interplacentomal region of the fetal membranes were examined macroscopically as well as by light and scanning electron microscopy. In pregnancies established by somatic nucleus transfer (NT), the umbilical cord and fetal membranes were edematous. Placentomal fusion was common, resulting in increased size and a decreased number of placentomes. Extensive areas of the chorioallantoic membrane were devoid of placentomes. An increased number of functional or accessory microcotyledons (< 1 cm) were present at the maternally oriented surface of fetal membranes. Extensive areas of extravasated maternal blood were present within the placentomes and in the interplacentomal region. The crypts on the caruncular surface were dilated and accommodated complexes of more than one primary villus, as opposed to a single villus in non-cloned placentae. Scanning electron microscopy of blood vessel casts revealed that there was also more than one stem artery per villous tree and that the ramification of the vessels failed to form dense complexes of capillary loops and sinusoidal dilations as in normal pregnancies. At the materno-fetal interface, however, the trophoblast and uterine epithelium had normal histology. In conclusion, the NT placentas had a range of pathomorphological changes; this was likely associated with the poor clinical outcome of NT pregnancies. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Placentae of three hystricimorph rodents-capybara, agouti and paca-were examined by conventional histology, immunohistochemistry for cytokeratin and vimentin, and TUNEL staining. The placentae were divided into lobules of labyrinthine syncytium separated by interlobular and marginal trophoblast. The subplacenta comprised cytotrophoblasts, supported on lamellae of allantoic mesoderm, and syncytiotrophoblast. The central excavation was still apparent in the definitive placenta of capybara. In agouti and paca, the decidua of the junctional zone formed a mesoplacenta comprising a capsule and a pedicle. Towards term the pedicle formed a tenuous attachment between placenta and uterine wall comprising a few maternal vessels surrounded by degraded tissue. In paca placenta, it was shown by TUNEL staining that breakdown of this tissue occurred by apoptosis. The visceral yolk sac was highly villous and, in agouti, the yolk sac villi were extremely long. Lateral to its attachment to the placenta, the fetal surface was covered with non-vascular yolk sac endoderm. A layer of spongiotrophoblast cells was interposed between the endoderm and the marginal trophoblast. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Background: the paca is a South American rodent with potential as a commercial food animal. We examined paca placenta as part of a wider effort to understand the reproductive biology of this species.Methods: Thirteen specimens between midgestation and term of pregnancy were studied by light and transmission electron microscopy.Results: the placenta is divided into several lobes separated by interlobular trophoblast. Maternal arterial channels and fetal veins are found at the centre of each lobe. In the labyrinth, maternal blood flows through trophoblast-lined lacunae in close proximity to the fetal capillaries. The interhaemal barrier is of the haemomonochorial type with a single layer of syncytiotrophoblast. Caveolae occur in the apical membrane of the syncytiotrophoblast and recesses in the basal membrane, but there is no evidence of transtrophoblastic channels. The interlobular areas consist of cords of syncytiotrophoblast defining maternal blood channels that drain the labyrinth. Yolk sac endoderm covers much of the fetal surface of the placenta. The subplacenta comprises cytotrophoblast and syncytiotrophoblast. There are dilated intercellular spaces between the cytotrophoblasts and lacunae lined by syncytiotrophoblast. In the junctional zone between subplacenta and decidua, there are nests of multinucleated giant cells with vacuolated cytoplasm. The entire placenta rests on a pedicle of maternal tissue. An inverted yolk sac placenta is also present. The presence of small vesicles and tubules in the apical membrane of the yolk sac endoderm and larger vesicles in the supranuclear region suggest that the yolk sac placenta participates in maternal-fetal transfer of protein.Conclusion: the paca placenta closely resembles that of other hystricomorph rodents. The lobulated structure allows for a larger exchange area and the development of precocial young.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)