4 resultados para PIROPLASM
Resumo:
This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100 sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the platelet count, coagulation time and platelet activity in dogs experimentally infected with Rangelia vitalii during the acute phase of the disease. For this study, 12 young dogs (females) were used, separated in two groups. Group A (uninfected control) was composed by healthy dogs (n=5), and group B consisted of R. vitalii-infected animals (n=7). After being inoculated with R. vitalii-infected blood, animals were monitored by blood smear examinations, which showed intra-erythrocytic forms of the parasite five days post-inoculation (PI). Blood samples were collected on days 0, 10, 20 and 30 PI. The material collected was placed in tubes containing EDTA for quantification of platelets, citrate anticoagulant platelet aggregation, and measuring the clotting time. Right after blood collection on days 10 and 20 PI, dogs were anesthetized for collecting bone marrow samples. A significant reduction (P<0.01) of the number of platelets was observed in R. vitalii-infected blood, when compared with uninfected dogs on days 10 and 20 PI. Additionally, macro-platelets were observed only in infected dogs. Prothrombin time and activated partial thromboplastin time did not differ between infected and uninfected dogs. The megakaryocyte count increased (P<0.01) significantly in infected dogs when compared with uninfected ones on days 10 and 20 PI. Platelet aggregation decreased (P<0.01) significantly in infected dogs in comparison to the control on days 10 and 20 PI. Therefore, rangeliosis in dogs causes a severe thrombocytopenia during the acute phase of infection. This platelets reduction probably occurred due to splenic sequestration and/or immune-mediated thrombocytopenia. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A human-derived strain of the agent of human granulocytic ehrlichiosis, a recently described emerging rickettsial disease, has been established by serial blood passage in mouse hosts. Larval deer ticks acquired infection by feeding upon such mice and efficiently transmitted the ehrlichiae after molting to nymphs, thereby demonstrating vector competence. The agent was detected by demonstrating Feulgen-positive inclusions in the salivary glands of the experimentally infected ticks and from field-derived adult deer ticks. White-footed mice from a field site infected laboratory-reared ticks with the agent of human granulocytic ehrlichiosis, suggesting that these rodents serve as reservoirs for ehrlichiae as well as for Lyme disease spirochetes and the piroplasm that causes human babesiosis. About 10% of host-seeking deer ticks were infected with ehrlichiae, and of these, 20% also contained spirochetes. Cotransmission of diverse pathogens by the aggressively human-biting deer tick may have a unique impact on public health in certain endemic sites.