484 resultados para PHYLUM-CNIDARIA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil taxa of uncertain phytogenetic affinities can play a crucial role in the analysis of character evolution within major extant groups. Marques & Collins (2004) concluded that conulariids (?Ediacaran-Triassic) are an extinct group of medusozoan cnidarians most closely related to Stauromedusae. However, only six of the 87 characters used by these authors can be observed in conulariid fossils. Rescoring the character states of conulariids in a conservative manner yields a new hypothesis for the phylogenetic position of conulariids, namely that they are the sister group of the scyphozoan order Coronatae rather than Stauromedusae, which is revealed as the earliest diverging lineage of Medusozoa. This new hypothesis also implies several different sequences of character evolution within Cnidaria. Specifically, the presence of a periderm completely covering the polyp in conutariids and coronates appears to be derived within Scyphozoa. Strobilation appears to be a synapomorphy uniting conulariids, Coronatae, Rhizostomeae and Semaeostomeae. This result supports the controversial interpretation of one exceptionally preserved conulariid that potentially shows that these animals produced ephyrae by strobilation. Finally, the pelagic adult medusa stage and the giant fibre nerve net appear to be features that are derived within Medusozoa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jellyfish (medusae) are sometimes the most noticeable and abundant members of coastal planktonic communities, yet ironically, this high conspicuousness is not reflected in our overall understanding of their spatial distributions across large expanses of water. Here, we set out to elucidate the spatial (and temporal) patterns for five jellyfish species (Phylum Cnidaria, Orders Rhizostomeae and Semaeostomeae) across the Irish & Celtic Seas, an extensive shelf-sea area at Europe's northwesterly margin encompassing several thousand square kilometers. Data were gathered using two independent methods: (1) surface-counts of jellyfish from ships of opportunity, and (2) regular shoreline surveys for stranding events over three consecutive years. Jellyfish species displayed distinct species-specific distributions, with an apparent segregation of some species. Furthermore, a different species composition was noticeable between the northern and southern parts of the study area. Most importantly, our data suggests that jellyfish distributions broadly reflect the major hydrographic regimes (and associated physical discontinuities) of the study area, with mixed water masses possibly acting as a trophic barrier or non-favourable environment for the successful growth and reproduction of jellyfish species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on 16 specimens from the Southwestern Atlantic coast (Argentina and Brazil) we reinterpret the taxonomic position of Tessera gemmaria Goy, 1979, a stauromedusa considered as incertae sedis for a long time. Using external morphology, histological preparations and molecular data (16S and COI) we conclude that T. gemmaria is an early stage of a cerinula, the long-lived planktonic larval stage of the Ceriantharia (Anthozoa).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jellyfish (medusae) are sometimes the most noticeable and abundant members of coastal planktonic communities, yet ironically, this high conspicuousness is not reflected in our overall understanding of their spatial distributions across large expanses of water. Here, we set out to elucidate the spatial (and temporal) patterns for five jellyfish species (Phylum Cnidaria, Orders Rhizostomeae and Semaeostomeae) across the Irish & Celtic Seas, an extensive shelf-sea area at Europe’s northwesterly margin encompassing several thousand square kilometers. Data were gathered using two independent methods: (1) surface-counts of jellyfish from ships of opportunity, and (2) regular shoreline surveys for stranding events over three consecutive years. Jellyfish species displayed distinct species-specific distributions, with an apparent segregation of some species. Furthermore, a different species composition was noticeable between the northern and southern parts of the study area. Most importantly, our data suggests that jellyfish distributions broadly reflect the major hydrographic regimes (and associated physical discontinuities) of the study area, with mixed water masses possibly acting as a trophic barrier or non-favourable environment for the successful growth and reproduction of jellyfish species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal “hotspots” during consecutive years (2003–2005). Examination of retrospective sightings data (>50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO2-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH4Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na-free seawater indicate a potential role of Na/H plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A search of databases with the sequence from the 5′ untranslated region of a Hydra cDNA clone encoding a receptor protein-tyrosine kinase revealed that a number of Hydra cDNAs contain one of two different sequences at their 5′ ends. This finding suggested the possibility that mRNAs in Hydra receive leader sequences by trans-splicing. This hypothesis was confirmed by the finding that the leader sequences are transcribed as parts of small RNAs encoded by genes located in the 5S rRNA clusters of Hydra. The two spliced leader (SL) RNAs (SL-A and -B) contain splice donor dinucleotides at the predicted positions, and genes that receive SLs contain splice acceptor dinucleotides at the predicted positions. Both of the SL RNAs are bound by antibody against trimethylguanosine, suggesting that they contain a trimethylguanosine cap. The predicted secondary structures of the Hydra SL RNAs show significant differences from the structures predicted for the SLs of other organisms. Messenger RNAs have been identified that can receive either SL-A or -B, although the impact of the two different SLs on the function of the mRNA is unknown. The presence and features of SL addition in the phylum Cnidaria raise interesting questions regarding the evolution of this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondrial genes for cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 5 (ND5) of the sea anemone Metridium senile (phylum Cnidaria) each contain a group I intron. This is in contrast to the reported absence of introns in all other metazoan mtDNAs so far examined. The ND5 intron is unusual in that it ends with A and contains two genes (ND1 and ND3) encoding additional subunits of NADH dehydrogenase. Correctly excised ND5 introns are not circularized but are precisely cleaved near their 3' ends and polyadenylylated to provide bicistronic transcripts of ND1 and ND3. COI introns, which encode a putative homing endonuclease, circularize, but in a way that retains the entire genome-encoded intron sequence (other group I introns are circularized with loss of a short segment of the intron 5' end). Introns were detected in the COI and ND5 genes of other sea anemones, but not in the COI and ND5 genes of other cnidarians. This suggests that the sea anemone mitochondrial introns may have been acquired relatively recently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A evolução do veneno, uma das misturas mais complexas da natureza, tem sustentado o sucesso da diversificação de inúmeras linhagens de animais. Serpentes deslizantes ou medusas flutuantes utilizam o veneno, um coquetel de peptídeos farmacologicamente ativos, sais e moléculas orgânicas. Esses animais surpreendentes têm provocado grande fascínio ao longo da história humana. Nesta dissertação propomos um estudo da evolução dos venenos no filo Cnidaria, englobando dados proteômicos e genômicos. Este projeto teve como objetivos: (1) caracterizar e elucidar a evolução da composição do veneno em Cnidaria por meio da comparação de listas de proteínas; (2) testar a hipótese de que a variação na família de toxinas específica de cnidários tem sido o resultado de um regime de seleção positiva; e (3) determinar a extensão em que a duplicação de genes pode ser considerada como a principal razão para a diversificação de toxinas em Cnidaria. O capítulo \"Comparative proteomics reveals common components of a powerful arsenal in the earliest animal venomous lineage, the cnidarians\" propõe o estudo comparado mais completo sobre a composição do veneno de cnidários e uma hipótese sobre a montagem evolutiva do complexo arsenal bioquímico de cnidários e do veneno ancestral desse grupo basal. Vinte e oito famílias de proteínas foram identificadas. Destas, 13 famílias foram registradas pela primeira vez no proteoma de Cnidaria. Pelo menos 15 famílias de toxinas foram recrutadas no proteoma de veneno de cnidários antes da diversificação dos grupos Anthozoa e Medusozoa. Nos capítulos \"Evidence of episodic positive selection in the evolution of jellyfish toxins of the cnidarian venom\" e \"Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia)\", nossas análises demonstram que as famílias de toxinas nos cnidários se diversificam amplamente mediante a duplicação de genes. Além disso, em contraste com as famílias de toxinas do veneno na maioria das linhagens animais; nós identificamos um padrão diferente na família de toxinas específica de cnidários, em que há uma seleção purificadora por longos períodos seguindo longos tempos de diversificação ou vice-versa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles) into a population, is a fundamental process for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coral populations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal and maintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect) and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness) and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation. The creation of management plans to promote impact mitigation,rehabilitation and conservation of the Colombian coral reefs is a necessity that requires firstly, a review and integration of existing literature on scleractinian coral recruitment in Colombia and secondly, larger scale field studies. This motivated us to summarize and analyze all existing information on coral recruitment to determine the state of knowledge, isolate patterns, identify gaps, and suggest future lines of research.