989 resultados para PHYLOGENY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speciation, despite ongoing gene flow can be studied directly in nature in ring species that comprise two reproductively isolated populations connected by a chain or ring of intergrading populations. We applied three tiers of spatio-temporal analysis (phylogeny/historical biogeography, phylogeography and landscape/population genetics) to the data from mitochondrial and nuclear genomes of eastern Australian parrots of the Crimson Rosella Platycercus elegans complex to understand the history and present genetic structure of the ring they have long been considered to form. A ring speciation hypothesis does not explain the patterns we have observed in our data (e.g. multiple genetic discontinuities, discordance in genotypic and phenotypic assignments where terminal differentiates meet). However, we cannot reject that a continuous circular distribution has been involved in the group's history or indeed that one was formed through secondary contact at the 'ring's' east and west; however, we reject a simple ring-species hypothesis as traditionally applied, with secondary contact only at its east. We discuss alternative models involving historical allopatry of populations. We suggest that population expansion shown by population genetics parameters in one of these isolates was accompanied by geographical range expansion, secondary contact and hybridization on the eastern and western sides of the ring. Pleistocene landscape and sea-level and habitat changes then established the birds' current distributions and range disjunctions. Populations now show idiosyncratic patterns of selection and drift. We suggest that selection and drift now drive evolution in different populations within what has been considered the ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth’s biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1–4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesicadapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights the opportunities that development of arid conditions provides for rapid and diverse evolutionary radiations, and re-enforces the emerging view that Pleistocene environmental change can have diverse impacts on genetic structure and diversity in different biomes. There is a clear need for more detailed and targeted phylogeographical studies of Australia’s arid biota and we suggest a framework and a set of a priori hypotheses by which to proceed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent phylogenetic analyses of Albugo candida using the mitochondrial cytochrome c oxidase subunit II (cox2) gene, the nuclear ribosomal RNA large subunit (LSU) gene and the nuclear ribosomal RNA internal transcribed spacer (ITS) gene region have revealed significant genetic variation and led to the description of new species in the A. candida complex. This study examined the genetic diversity within Australian collections of A. candida from various Brassicaceae species in a range of geographic locations. Phylogenetic analysis of 31 Australian A. candida collections from 11 hosts using the rDNA ITS region, rDNA LSU region and cox2 mtDNA showed that the majority of Australian A. candida collections were the common form of A. candida. One collection from a common weed host, hairy bitter cress (Cardamine hirsuta), was found to belong to a previously reported but undescribed species, while three collections, also from C. hirsuta, were found to belong to a new undescribed species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting the threat of extinction aids efficient distribution of conservation resources. This paper utilises a comparative macroecological approach to investigate the threat of extinction in Neotropical birds. Data on ecological variables for 1708 species are analysed using stepwise regression to produce minimum adequate models, first using raw species values and then using independent contrasts (to control for phylogenetic effects). The models differ, suggesting phylogeny has significant effects. The raw species analysis reveals that number of zoogeographical regions occupied, elevational range and utilisation of specialised microhabitats were negatively associated with threat, while minimum elevation and body mass were positively associated, whereas the independent contrasts analysis only identifies zoogeographical regions as important. Confining the analysis to the 582 species restricted to a single zoogeographical region reveals elevational range and number of habitats occupied to be negatively correlated with threat whether the analysis is based on the raw data or on independent contrasts. Analysis of four contrasting zoogeographical regions highlights regional variation in the models. In two Andean regions the threat of extinction declines as the elevation range across which the species occurs increases. In the presence of substantial human populations on high Andean plateaus, a species with a greater elevational range may be more likely to persist at some (relatively) unsettled altitudes. In Central South America, the strongest predictor of threat is minimum elevation of occurrence: species with a lower minimum are less threatened. The minimum elevation result suggests that lowland species experiencing an ecological limit to their minimum elevation (min. elevation >0 m) may be more at risk than those not experiencing such a limit (min. elevation = 0 m). Finally, in southern Amazonia, where there is little altitudinal variation, the only weak predictors of threat are body size, larger species being more threatened, and number of habitats, species occupying more habitats being less threatened. These contrasting results emphasise the importance of undertaking extinction risk analyses at an appropriate geographical scale. Since the models explained only a low percentage of total variance in the data, the effects of human-mediated habitat disturbance across a wide range of habitats may be important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. This study tests a model of the relationship of body mass to reproductive power (the rate of conversion of energy from the environment to an organism’s offspring). Specifically tested is the prediction that the regression of life-history variables on body size will change slope and sign about an ‘optimum’ body mass of 100 g.
2. Life-history data from the mammalian order Insectivora have been collated and analysed using a phylogenetic comparative method to test this prediction.
3. The analyses showed little evidence for significant changes in slope or sign around 100 g body mass, or other possible optimal body masses, contradicting the predictions of the model. These findings agree with those of similar analyses on life-history variables of bats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer simulations were used to test the effect of increasing phylogenetic topological inaccuracy on the results obtained from correlation tests of independent contrasts. Predictably, increasing the number of disruptions in the tree increases the likelihood of significant error in the r values produced and in the statistical conclusions drawn from the analysis. However, the position of the disruption in the tree is important: Disruptions closer to the tips of the tree have a greater effect than do disruptions that are close to the root of the tree. Independent contrasts derived from inaccurate topologies are more likely to lead to erroneous conclusions when there is a true significant relationship between the variables being tested (i.e., they tend to be conservative). The results also suggest that random phylogenies perform no better than nonphylogenetic analyses and, under certain conditions, may perform even worse than analyses using raw species data. Therefore, the use of random phylogenies is not beneficial in the absence of knowledge of the true phylogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sex and aggregation pheromones consist of species-specific blends of chemicals. The way in which different species’ blends have evolved has been the subject of some debate. Theoretical predictions suggest that differences between species have arisen not through the accruing of small changes, but through major shifts in chemical composition. Using data on the aggregation pheromones of 34 species of bark beetle from two genera, Dendroctonus and Ips, we investigated how the distributions of the chemical components of their pheromone blends mirror their phylogenetic relationships. We tested whether there were consistent patterns that could be used to help elucidate the mode of pheromone evolution. Although there were obvious differences in pheromone blends between the two genera, the differences between species within each genus followed a less clear phylogenetic pattern. In both genera, closely related species are just as different as more distantly related species. Within Dendroctonus, particularly, most chemical components were distributed randomly across the phylogeny. Indeed, for some chemicals, closely related species may actually be more different than would be expected from a random distribution of chemical components. This argues strongly against the idea of minor shifts in pheromone evolution. Instead, we suggest that, within certain phylogenetic constraints, pheromone evolution in bark beetles is characterized by large saltational shifts, resulting in sibling species being substantially phenotypically (i.e. pheromonally) different from one another, thus agreeing with theoretical predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pheromones are chemical signals whose composition varies enormously between species. Despite pheromones being a nearly ubiquitous form of communication, particularly among insects, our understanding of how this diversity has arisen, and the processes driving the evolution of pheromones, is less developed than that for visual and auditory signals. Studies of phylogeny, genetics and ecological processes are providing new insights into the patterns, mechanisms and drivers of pheromone evolution, and there is a wealth of information now available for analysis. Future research could profitably use these data by employing phylogenetic comparative techniques to identify ecological correlates of pheromone composition. Genetic analyses are also needed to gain a clearer picture of how changes in receivers are associated with changes in the signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim  To investigate the relationship between geographical range size and abundance (population density) in Australian passerines.
Location  Australia (including Tasmania).
Methods   We analysed the relationship between range size and local abundance for 272 species of Australian passerines, across the whole order and within families. We measured abundance as mean and maximum abundance, and used a phylogenetic generalized least-squares regression method within a maximum-likelihood framework to control for effects of phylogeny. We also analysed the relationship within seven different habitat types.
Results  There was no correlation between range size and abundance for the whole set of species across all habitats. Analyses within families revealed some strong correlations but showed no consistent pattern. Likewise we found little evidence for any relationship or conflicting patterns in different habitats, except that woodland/forest habitat species exhibit a negative correlation between mean abundance and range size, whilst species in urban habitats exhibit a significant positive relationship between maximum abundance and range size. Despite the general lack of correlation, the raw data plots of range size and abundance in this study occupied a triangular space, with narrowly distributed species exhibiting a greater variation in abundances than widely distributed species. However, using a null model analysis, we demonstrate that this was due to a statistical artefact generated by the frequency distributions for the individual variables.
Conclusions   We find no evidence for a positive range size-abundance relationship among Australian passerines. This absence of a relationship cannot be explained by any conflicting effects introduced by comparing across different habitats, nor is it explained by the fact that large proportions of Australia are arid. We speculate that the considerable isolation and evolutionary age of Australian passerines may be an explanatory factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggregation pheromones are used by fruit flies of the genus Drosophila to assemble on breeding substrates, where they feed, mate and oviposit communally. These pheromones consist of species-specific blends of chemicals. Here, using a phylogenetic framework, we examine how differences among species in these pheromone blends have evolved. Theoretical predictions, genetic evidence, and previous empirical analysis of bark beetle species, suggest that aggregation pheromones do not evolve gradually, but via major, saltational shifts in chemical composition. Using pheromone data for 28 species of Drosophila we show that, unlike with bark beetles, the distribution of chemical components among species is highly congruent with their phylogeny, with closely related species being more similar in their pheromone blends than are distantly related species. This pattern is also strong within the melanogaster species group, but less so within the virilis species group. Our analysis strongly suggests that the aggregation pheromones of Drosophila exhibit a gradual, not saltational, mode of evolution. We propose that these findings reflect the function of the pheromones in the ecology of Drosophila, which does not hinge on species specificity of aggregation pheromones as signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cuticular hydrocarbons (CHCs) of ants provide important cues for nestmate and caste recognition. There is enormous diversity in the composition of these CHCs, but the manner in which this diversity has evolved is poorly understood. We gathered data on CHC profiles for 56 ant species, relating this information to their phylogeny. We deduced the mode of evolution of CHC profiles by reconstructing character evolution and then relating the number of changes in CHC components along each branch of the phylogeny to the length of the branch. There was a strong correlation between branch length and number of component changes, with fewer changes occurring on short branches. Our analysis thereby indicated a gradual mode of evolution. Different ant species tend to use specific CHC structural types that are exclusive of other structural types, indicating that species differences may be generated in part by switching particular biosynthetic pathways on or off in different lineages. We found limited, and contradictory, evidence for abiotic factors (temperature and rainfall) driving change in CHC profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data.

Methodology/Principal Findings: The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n.

Conclusion/Significance: In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species. © 2011 Hawlitschek et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single species status of H. armigera has been doubted, due to its wide distribution and plant host range across the Old World. This study explores the global genetic diversity of H. armigera and its evolutionary relationship to H zea.

Results
We obtained partial (511 bp) mitochondrial DNA (mtDNA) Cytochrome Oxidase-I (COI) sequences for 249 individuals of H. armigera sampled from Australia, Burkina Faso, Uganda, China, India and Pakistan which were associated with various host plants. Single nucleotide polymorphisms (SNPs) within the partial COI gene differentiated H. armigera populations into 33 mtDNA haplotypes. Shared haplotypes between continents, low F-statistic values and low nucleotide diversity between countries (0.0017 – 0.0038) suggests high mobility in this pest. Phylogenetic analysis of four major Helicoverpa pest species indicates that H. punctigera is basal to H. assulta, which is in turn basal to H. armigera and H. zea. Samples from North and South America suggest that H. zea is also a single species across its distribution. Our data reveal short genetic distances between H. armigera and H. zea which seem to have been established via a founder event from H. armigera stock at around 1.5 million years ago.

Conclusion
Our mitochondrial DNA sequence data supports the single species status of H. armigera across Africa, Asia and Australia. The evidence for inter-continental gene flow observed in this study is consistent with published evidence of the capacity of this species to migrate over long distances. The finding of high genetic similarity between Old World H. armigera and New World H. zea emphasises the need to consider work on both pests when building pest management strategies for either.