986 resultados para PHYLOGENETIC CHARACTERIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six strains of a previously undescribed catalase-positive coryneform bacterium isolated from clinical specimens from dogs were characterized by phenotypic and molecular genetic methods. Biochemical and chemotaxonomic studies revealed that the unknown bacterium belonged to the genus Corynebacterium sensu stricto. Comparative 16S rRNA gene sequencing showed that the six strains were genealogically highly related and constitute a new subline within the genus Corynebacterium; this subline is close to but distinct from C. falsenii, C. jeikeium, and C. urealyticum. The unknown bacterium from dogs was distinguished from all currently validated Corynebacterium species by phenotypic tests including electrophoretic analysis of whole-cell proteins. On the basis of phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as a new species, Corynebacterium auriscanis. The type strain of C. auriscanis is CCUG 39938T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The American/Asian genotype of Dengue virus type 2 (DENV-2) was introduced into the Americas in the 80′s. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP), Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3) close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1) to 1988/89, followed by the introduction of lineages BR2 (1998-2000) and BR3 (2003-05). Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue. © 2013 Drumond et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three field isolates of small ruminant lentiviruses (SRLVs) were derived from a mixed flock of goats and sheep certified for many years as free of caprine arthritis encephalitis virus (CAEV). The phylogenetic analysis of pol sequences permitted to classify these isolates as A4 subtype. None of the animals showed clinical signs of SRLV infection, confirming previous observations which had suggested that this particular subtype is highly attenuated, at least for goats. A quantitative real time PCR strategy based on primers and probes derived from a highly variable env region permitted us to classify the animals as uninfected, singly or doubly infected. The performance of different serological tools based on this classification revealed their profound inadequacy in monitoring animals infected with this particular SRLV subtype. In vitro, the isolates showed differences in their cytopathicity and a tendency to replicate more efficiently in goat than sheep cells, especially in goat macrophages. By contrast, in vivo, these viruses reached significantly higher viral loads in sheep than in goats. Both env subtypes infected goats and sheep with equal efficiency. One of these, however, reached significantly higher viral loads in both species. In conclusion, we characterized three isolates of the SRLV subtype A4 that efficiently circulate in a mixed herd of goats and sheep in spite of their apparent attenuation and a strict physical separation between goats and sheep. The poor performance of the serological tools applied indicates that, to support an SRLV eradication campaign, it is imperative to develop novel, subtype specific tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reductive dechlorination (RD) of tetrachloroethene (PCE) to vinyl chloride (VC) and, to a lesser extent, to ethene (ETH) by an anaerobic microbial community has been investigated by studying the processes and kinetics of the main physiological components of the consortium. Molecular hydrogen, produced by methanol-utilizing acetogens, was the electron donor for the PCE RD to VC and ETH without forming any appreciable amount of other chlorinated intermediates and in the near absence of methanogenic activity. The microbial community structure of the consortium was investigated by preparing a 1 6S rDNA clone library and by fluorescence in situ hybridization (FISH). The PCR primers used in the clone library allowed the harvest of 16SrDNA from both bacterial and archaeal members in the community. A total of 616 clones were screened by RFLP analysis of the clone inserts followed by the sequencing of RFLP group representatives and phylogenetic analysis. The clone library contained sequences mostly from hitherto undescribed bacteria. No sequences similar to those of the known RD bacteria like 'Dehalococcoides ethenogenes' or Dehalobacter restrictus were found in the clone library, and none of these bacteria was present in the RD consortium according to FISH. Almost all clones fell into six previously described phyla of the bacterial domain, with the majority (56(.)6%) being deep-branching members of the Spirochaetes phylum. Other clones were in the Firmicutes phylum (18(.)5%), the Chloroflexi phylum (16(.)4%), the Bacteroidetes phylum (6(.)3%), the Synergistes genus (11(.)1%) and a lineage that could not be affiliated with existing phyla (11(.)1%). No archaeal clones were found in the clone library. Owing to the phylogenetic novelty of the microbial community with regard to previously cultured microorganisms, no specific microbial component(s) could be hypothetically affiliated with the RD phenotype. The predominance of Spirochaetes in the microbial consortium, the main group revealed by clone library analysis, was confirmed by FISH using a purposely developed probe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alfuy virus (ALFV) is classified as a subtype of the flavivirus Murray Valley encephalitis virus (MVEV); however, despite preliminary reports of antigenic and ecological similarities with MVEV, ALFV has not been associated with human disease. Here, it was shown that ALFV is at least 10(4)-fold less neuroinvasive than MVEV after peripheral inoculation of 3-week-old Swiss outbred mice, but ALFV demonstrates similar neurovirulence. In addition, it was shown that ALFV is partially attenuated in mice that are deficient in alpha/beta interferon responses, in contrast to MVEV which is uniformly lethal in these mice. To assess the antigenic relationship between these viruses, a panel of monoclonal antibodies was tested for the ability to bind to ALFV and MVEV in ELISA. Although the majority of monoclonal antibodies recognized both viruses, confirming their antigenic similarity, several discriminating antibodies were identified. Finally, the entire genome of the prototype strain of ALFV (MRM3929) was sequenced and phylogenetically analysed. Nucleotide (73%) and amino acid sequence (83 %) identity between ALFV and IMVEV confirmed previous reports of their close relationship. Several nucleotide and amino acid deletions and/or substitutions with putative functional significance were identified in ALFV, including the abolition of a conserved glycosylation site in the envelope protein and the deletion of the terminal dinucleotide 5'-CUOH-3' found in all other members of the genus. These findings confirm previous reports that ALFV is closely related to IMVEV, but also highlights significant antigenic, genetic and phenotypic divergence from MVEV. Accordingly, the data suggest that ALFV is a distinct species within the serogroup Japanese encephalitis virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1 bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1 bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bats are main reservoirs for Lyssavirus worldwide, which is an important public health issue because it constitutes one of the big challenges in rabies control. Yet, little is known about how the virus is maintained among bats, and the epidemiological relationships remain poorly understood. The aim of the present study was to investigate the distribution of the rabies virus (RABV) in bat tissues and organs and to genetically characterize virus isolates from naturally infected non-hematophagous bats. The heminested reverse transcriptase polymerase chain reaction (hnRT-PCR) and sequencing using primers to the nucleoprotein coding gene were performed. The results showed a dissemination of the RABV in different tissues and organs, particularly in the salivary glands, tongue, lungs, kidneys, bladder, intestine and feces, suggesting other possible forms of RABV elimination and the possibility of transmission among these animals. The phylogenetic analysis confirmed that different variants of RABV are maintained by non-hematophagous bats in nature and have similar tissue distribution irrespective of bat species and phylogenetic characterization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity are, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of Antarctic archaeal communities adds information on the biogeography of this group and helps understanding the dynamics of biogenic methane production in such extreme habitats. Molecular methods were combined to methane flux determinations in Martel Inlet, Admiralty Bay, to assess archaeal diversity, to obtain information about contribution of the area to atmospheric methane budget and to detect possible interferences of the Antarctic Brazilian Station Comandante Ferraz (EACF) wastewater discharge on local archaeal communities and methane emissions. Methane fluxes in Martel Inlet ranged from 3.2 to 117.9 mu mol CH(4) m(-2) d(-1), with an average of 51.3 +/- 8.5 mu mol CH(4) m(-2) d(-1) and a median of 57.6 mu mol CH(4) m(-2)d(-1). However, three negative fluxes averaging -11.3 mu mol CH(4) m(-2) d(-1) were detected in MacKellar Inlet, indicating that Admiralty Bay can be either a source or sink of atmospheric methane. Denaturing gradient gel electrophoresis (DGGE) showed that archaeal communities at EACF varied with depth and formed a group separated from the reference sites. Granulometric analysis indicated that differences observed may be mostly related to sediment type. However, an influence of wastewater input could not be discarded, since higher methane fluxes were found at CF site. suggesting stimulation of local methanogenesis. DGGE profile of the wastewater sample grouped separated from all other samples, suggesting that methanogenesis stimulation may be due to changes in environmental conditions rather than to the input of allochtonous species from the wastewater. 16S ribosomal DNA clone libraries analysis showed that all wastewater sequences were related to known methanogenic groups belonging to the hydrogenotrophic genera Methanobacterium and Methanobrevibacter and the aceticlastic genus Methanosaeta. EACF and Botany Point sediment clone libraries retrieved only groups of uncultivated Archaea, with predominance of Crenarchaeota representatives (MCG, MG1, MBG-B, MBG-C and MHVG groups). Euryarchaeota sequences found were mostly related to the LDS and RC-V groups, but MBG-D and DHVE-5 were also present. No representatives of cultivated methanogenic groups were found, but coverage estimates suggest that a higher number of clones would have to be analyzed in order to cover the greater archaeal diversity of Martel Inlet sediment. Nevertheless, the analysis of the libraries revealed groups not commonly found by other authors in Antarctic habitats and also indicated the presence of groups of uncultivated archaea previously associated to methane rich environments or to the methane cycle. (C) 2010 Elsevier Ltd. All rights reserved.