997 resultados para PHOTODYNAMIC INACTIVATION
Resumo:
This study evaluated the in vitro susceptibility of C. albicans, C. dubliniensis, C. tropicalis and C. krusei to photodynamic therapy (PDT) induced by Photogem® and light emitting diode (LED). Suspensions of each Candida strain were treated with three photosensitizer (PS) concentrations (10, 25 and 50 mg/L) and exposed to 18.0, 25.5 and 37.5 J/cm² LED light fluences (λ ~ 455 nm). Control suspensions were treated only with PS concentrations, only exposed to the LED light fluences or not exposed to LED light or PS. Sixteen experimental conditions were obtained and each condition was repeated three times. From each sample, serial dilutions were obtained and aliquots were plated on Sabouraud Dextrose Agar. After incubation of plates (37 ºC for 48 hours), colonies were counted (cfu/mL) and the data were statistically analyzed by ANOVA and the Tukey test (α=0.05). Complete killing of C. albicans was observed after 18.0 J/cm² in association with 50 mg/L of PS. C. dubliniensis were inactivated after 18.0 J/cm² using 25 mg/L of PS. The inactivation of C. tropicalis was observed after photosensitization with 25 mg/L and subsequent illumination at 25.5 J/cm². For C. krusei, none of the associations between PS and light resulted in complete killing of this species. PDT proved to be effective for the inactivation of C. albicans, C. dubliniensis and C. tropicalis. In addition, reduction in the viability of C. krusei was achieved with some of the PS and light associations.
Resumo:
Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.
Resumo:
Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.
Resumo:
El plan propone desarrollar nuevas agentes fotosensibilizadores derivados de macrociclos pirrólicos con aplicaciones en la inactivación fotodinámica (PDI) de microorganismos. La propuesta abarca el desarrollo de procedimientos apropiados para la síntesis de compuestos derivados de porfirinas, subftalocianinas y ftalocianinas sustituidas en la periferia por grupos que permitan aumentar la actividad biológica. Con la finalidad de incrementar la incorporación intracelular y la actividad fotodinámica se evaluarán sensibilizadores con distinta distribución y número de cargas, en los cuales se ha incrementado el carácter anfifílico por la presencia de grupos lipofílicos y catiónicos. La combinación de un fotosensibilizador con un compuesto antifúngico está diseñada para aumentar la eficiencia en la inactivación de hongos. También serán evaluadas superficies antimicrobianas recubiertas con una película de fotosensibilizadores. En primera instancia, la actividad fotodinámica de los nuevos agentes fototerapéuticos serán evaluados en sistemas biomiméticos conteniendo sustratos biológicamente activos. Los estudios in vitro serán realizados en cultivos de bacterias y levaduras. Esta aplicación presenta considerable importancia en la inactivación de microorganismos patógenos que crecen in vivo en un foco localizado de infección, en la desinfección de fluidos biológicos y aguas contaminadas con microbios resistentes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms.Methods: The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 mu M. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis.Results: The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 mu M methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 mu M toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 mu M malachite green, with microbial reductions of 1.6-4.0 log(10).Conclusion: Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride- phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm-2. Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. Candida albicans biofilm overview after 30 min of contact with free ClAlPc. This study presents the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic nanoemulsions (NE) to inactivate C. albicans planktonic cultures and biofilm comparing with free ClAlPc. The photodynamic effect was dependent on the delivery system, superficial charge and light dose. Cationic NE-ClAlPc and free ClAlPc caused significant reduction in colony counts, cell metabolism and damage to the cell membrane (P < 0.05). However, only the free ClAlPc was able to cause photokilling of the yeast. The anionic NE-ClAlPc did not present antifungal activity. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Resumo:
In vitro investigations of curcumin-mediated photodynamic therapy (PDT) are encouraging, but there is a lack of reliable in vivo evidence of its efficacy. This study describes the photoinactivation of Candida albicans in a murine model of oral candidiasis, using curcumin as a photosensitizer. Forty immunosuppressed mice were orally inoculated with C. albicans and after five days, they received topical curcumin (20, 40 and 80 μM) and illumination with LED light. The use of curcumin or light alone were also investigated. Positive control animals did not receive any treatment and negative control animals were not inoculated with C. albicans. The number of surviving yeast cells was determined and analyzed by ANOVA and Tukey's post-hoc test (α = 0.05). Histological evaluation of the presence of yeast and inflammatory reaction was also conducted. All exposures to curcumin with LED light caused a significant reduction in C. albicans viability after PDT, but the use of 80 μM curcumin associated with light was able to induce the highest log10 reduction in colony counts (4 logs). It was concluded that curcumin-mediated PDT proved to be effective for in vivo inactivation of C. albicans without harming the host tissue of mice. © 2013 ISHAM.
Resumo:
The purpose of this study was to evaluate specific effects of photodynamic inactivation (PDI) using erythrosine (ER) and Rose Bengal (RB) photosensitizers and a blue light-emitting diode (LED) on the viability of Streptococcus mutans and Streptococcus sanguinis biofilms. Biofilms were grown in acrylic disks immersed in broth to production of biofilms, inoculated with microbial suspension (106 cells/mL) and incubated for 48 h. After the formation of biofilms, the effects of the photosensitizers ER and RB at a concentration of 5 μM for 5 min and blue LED (455 ± 20 nm) for 180 s, photosensitizers alone and conjugated were evaluated. Next, the disks were placed in tubes with sterile physiological solution (0.9 % sodium chloride) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in brain heart infusion agar which were then incubated for 48 h. Then the numbers colony-forming units per milliliter (CFU/mL; log 10) were counted and analyzed statistically (ANOVA, Tukey test, P ≤ 0.05). Significant decreases in the viability of all microorganisms were observed for biofilms exposed to PDI mediated by both photosensitizers. The reductions with RB and ER were, 0.62 and 0.52 log10 CFU mL -1 for S. mutans biofilms (p = 0.001), and 0.95 and 0.88 log 10 CFU mL-1 for S. sanguinis biofilms (p = 0.001), respectively. The results showed that biofilms formed in vitro by S. mutans and S. sanguinis, were sensitive to PDI using a blue LED associated with photosensitizers ER or RB, indicating its use in the control of caries and periodontal diseases. © 2012 Springer-Verlag London Ltd.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Resumo:
Candida albicans is an opportunistic yeast that can cause oral candidosis through the formation of a biofilm, an important virulence factor that compromises the action of antifungal agents. The objective of this study was to compare the effect of rose bengal (RB)- and eosin Y (EY)-mediated photodynamic inactivation (PDI) using a green light-emitting diode (LED; 532 ± 10 nm) on planktonic cells and biofilms of C. albicans (ATCC 18804). Planktonic cultures were treated with photosensitizers at concentrations ranging from 0.78 to 400 μM, and biofilms were treated with 200 μM of photosensitizers. The number of colony-forming unit per milliliter (CFU/mL) was compared by analysis of variance and Tukey's test (P ≤ 0.05). After treatment, one biofilm specimen of the control and PDI groups were examined by scanning electron microscopy. The photosensitizers (6.25, 25, 50, 200, and 400 μM of EY, and 6.25 μM of RB or higher) significantly reduced the number of CFU/mL in the PDI groups when compared to the control group. With respect to biofilm formation, RB- and EY-mediated PDI promoted reductions of 0.22 log10 and 0.45 log10, respectively. Scanning electron microscopy showed that the two photosensitizers reduced fungal structures. In conclusion, EY- and RB-mediated PDI using LED irradiation significantly reduced C. albicans planktonic cells and biofilms. © 2013 Springer-Verlag London.
Resumo:
This study evaluated the photodynamic inactivation (PDI) mediated by Photodithazine® (PDZ) against 15 clinical isolates of Candida albicans, Candida glabrata and Candida tropicalis. Each isolate, in planktonic and biofilm form, was exposed to PDI by assessing a range of PDZ concentrations and light emitting diode fluences. Cell survival of the planktonic suspensions was determined by colony forming units (CFU ml-1). The antifungal effects of PDI against biofilms were evaluated by CFU ml-1 and metabolic assay. Data were analyzed by non-parametric tests (α = 0.05). Regardless of the species, PDI promoted a significant viability reduction of planktonic yeasts. The highest reduction in cell viability of the biofilms was equivalent to 0.9 log10 (CFU ml-1) for C. albicans, while 1.4 and 1.5 log10 reductions were obtained for C. tropicalis and C. glabrata, respectively. PDI reduced the metabolic activity of biofilms by 62.1, 76.0, and 76.9% for C. albicans, C. tropicalis, and C. glabrata, respectively. PDZ-mediated PDI promoted significant reduction in the viability of Candida isolates. © 2013 Taylor & Francis.