990 resultados para PHOSPHOLIPID HEAD GROUPS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near infrared Yb3+ vibronic sideband spectroscopy was used to characterize specific lanthanide binding sites in bacteriorhodopsin (bR) and retinal free bacteriorhodopsin (bO). The VSB spectra for deionized bO regenerated with a ratio of 1:1 and 2:1 ion to bO are identical. Application of a two-dimensional anti-correlation technique suggests that only a single Yb3+ site is observed. The Yb3+ binding site in bO is observed to consist of PO2− groups and carboxylic acid groups, both of which are bound in a bidentate manner. An additional contribution most likely arising from a phenolic group is also observed. This implies that the ligands for the observed single binding site are the lipid head groups and amino acid residues. The vibronic sidebands of Yb3+ in deionized bR regenerated at a ratio of 2:1 ion to bR are essentially identical to those in bO. The other high-affinity binding site is thus either not evident or its fluorescence is quenched. A discussion is given on the difference in binding of Ca2+ (or Mg2+) and lanthanides in phospholipid membrane proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups covalently connected by a hydrophobic or hydrophilic spacer. This paper reports the small-angle neutron scattering (SANS) measurements from aqueous micellar solutions of two different recently developed types of dimeric surfactants: (i) bis-anionic C16H33PO4--(CH2)(m)-PO4-C16H33,2Na(+) dimeric surfactants composed of phosphate head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Na(+), for spacer lengths m = 2, 4, 6, and 10, (ii) bis-cationic C16H33N+(CH3)(2)-CH2-(CH2-O-CH2)(p)-CH2-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a wettable polyethylene oxide spacer, referred to as 16-CH2-p-CH2-16,2Br(-), for spacer lengths p = 1 - 3. The micellar structures of these surfactants are compared with the earlier studied bis-cationic C16H33N+ (CH3)(2)-(CH2)(m)-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Br(-). It is found that 16-m-16,2Na(+), similar to 16-m-16,2Br(-), form various micellar structures depending on the spacer length. Micelles an disklike for rn = 2, rodlike for m = 4, and prolate ellipsoidal fur m = 6 and 10. The micelles of 16-CH2-p-CH2-16,2Br(-) are prolate ellipsoidal for all the values of p = 1 - 3. It is also found that micelles of 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-) are large in comparison to those of 16-in-16,2Br(-) for similar spacer lengths. This is connected with the fact that both in 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-), the head group or the spacer is more hydrated as compared to that in the 16-m-16,2Br(-). An increase in the hydration of the spacer or the head group increases the screening of the Coulomb repulsion between the charged head groups. This effect has been found to be more pronounced in the dimeric surfactants having wettable spacers. [S1063-651X(99)00303-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lyotropic liquid crystals exhibiting nematic phases were obtained from the mixtures potassium laurate/alkali sulfate salts (M2SO4)/1-undecanol (UndeOH)/water and sodium dodecyl sulfate (SDS)/M2SO4/1-dodecanol (DDeOH)/water, where M2SO4 represents the alkali sulfate salts being Li2SO4, Na2SO4, K2SO4, Rb2SO4 or Cs2SO4. The birefringences measurements were performed via laser conoscopy. Our results indicated that cosmotropic and chaotropic behaviors of both ions and head groups are very important to obtain lyotropic biaxial nematic phase. To obtain the biaxial nematic phase, surfactant head group and ion present in lyotropic mixture have relatively opposite behavior, e.g. one more cosmotropic (more chaotropic) other less cosmotropic (less chaotropic) or vice versa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polar headgroup of dipalmitoylphosphatidylcholine (DPPC) molecule both in gas phase and aqueous Solution is investigated by the hybrid quantum mechanical/molecular mechanical (QM/MM) method, in which the polar head of DPPC molecule and the bound water molecules are treated with density functional theory (DFT), while the apolar hydrocarbon chain of DPPC molecule is treated with MM method. It is demonstrated that the hybrid QM/MM method is both accurate and efficient to describe the conformations of DPPC headgroup. Folded structures of headgroup are found in gas phase calculations. In this work, both monohydration and polyhydration phenomena are investigated. In monohydration, different water association sites are studied. Both the hydration energy and the quantum properties of DPPC and water molecules are calculated at the DFT level of theory after geometry optimization. The binding force of monohydration is estimated by using the scan method. In polyhydration, more extended conformations are found and hydration energies in different polyhydration styles are estimated. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic voltammetry was employed to study the influence of sterols on the lipophilic ion transport through the BLM. The mole fraction of the sterols (cholesterol, oxidized cholesterol). as referred to total lipid, was varied in a range of 0-0.8. Data demonstrate that a thin-layer model is suitable to this BLM system. By this model, the number of charges transported per lipophilic ion, the concentration of the ion in the membrane bulk phase and the aqueous/membrane phase partition coefficient could be calculated. These parameters proved that sterols had an obvious influence on the lipophilic ion transport. Cholesterol had a stronger influence on the ion transport than oxidized cholesterol. Its incorporation into egg lecithin membranes increased the partition coefficient beta of the ion up to more than 3-fold. Yet, oxidized cholesterol incorporated into egg lecithin membranes only increased the beta up to less than 2-fold, and the beta had no great variation at different oxidized cholesterol mole fractions. The higher beta obtained was partly due to the trace amount of solvent existing in the core of the lipid bilayers. At the different sterol mole fractions, combining the change of beta with the change of peak current, we also concluded that sterols had somewhat inhibiting effect on the ion transport at the higher sterols mole fraction (>0.4). These results are explained in terms of the possible change of dipole potential of the membrane produced by sterols and the decrease of the membrane fluidity caused by the condensation effect of sterols and the thinning effect caused by sterols. The substituting group (in the oxidized cholesterol) had some inhibiting effects on the ion transport at higher mole fractions (oxidized cholesterol mole fraction >0.4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the relationship between phospholipid molecular structures and their olfactory responses to odorants, we designed and synthesized four phosphatidylcholine analogues with different long hydrocarbon (CH) chains and selected three natural phospholipids with different head-groups. By using interdigital electrodes (IEs) as olfactory sensors (OSs), we measured the responses of the Ifs coated with these seven different lipid membranes to four alcohol vapors in a gas flow system. The Ifs voltage changes were recorded and the voltage-relative saturate vapor pressure (V-P/P degrees) curves were also plotted. It was found that with a methyl (-CH3) placed at the C-8 position in the 18-carbon chain, the olfactory responses could be improved about ten times and with conjugated double bonds (C=C) in the long chains, the sensitivity could be increased by 3 similar to 4 orders of magnitude. As to head-groups, choline is preferred over ethanolamine and serine in phospholipid structures in terms of high olfactory sensitivity: These results are expected to be useful in further designing and manufacturing lipid-mimicking OSs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct-injection electrospray ionization mass spectrometry in combination with information-dependent data acquisition (IDA), using a triple-quadrupole/linear ion trap combination, allows high-throughput qualitative analysis of complex phospholipid species from child whole blood. In the IDA experiments, scans to detect specific head groups (precursor ion or neutral loss scans) were used as survey scans to detect phospholipid classes. An enhanced resolution scan was then used to confirm the mass assignments, and the enhanced product ion scan was implemented as a dependent scan to determine the composition of each phospholipid class. These survey and dependent scans were performed sequentially and repeated for the entire duration of analysis, thus providing the maximum information from a single injection. In this way, 50 different phospholipids belonging to the phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylcholine and sphingomyelin classes were identified in child whole blood. Copyright (C) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrostatic forces between membranes containing charged lipids were assumed to play an important role in influencing interactions between membranes long before quantitative measurements of such forces were available. ~ur measurements were designed to measure electrostatic forces between layers of lecithin charged with lipi~s carrying ionizable head groups. These experiments have shown that the interactions between charged lipid bila.yere are dominated by electrostatic forces only at separations greater than 30 A. At smaller separations the repulsion between charged bilayers is dominated by strong hydration forces. The net repulsive force between egg lecithin bilayers containing various amounts of cherged lipids (phosphatidylglycerol (PG) 5,10 ano 50 mole%, phosphatidyli. nosi tol (PI) 10 mole% and sodium oleate (Na-Ol) 3,5 and 10 mole%, where mole% gives the ratio of the number of moles' of .charged lipid to the total number of moles of all lipids present in the sample) was stuoied with the help ('If the osmotic streas technique described by LeNeveu et aI, (1977). Also, the forces between pure PG were j_nvestigated in the same manner. The results have been plotted showing variation of force as a function of bilay- _ er separation dw• All curVes 90 obtained called force curves, were found to be similar in sha.pe, showing two distinct regions, one when dw<.30 A is a region cf very rapid iiivariation of force with separation ( it is the region dominated by hydre,tion force) and second when dw> 40 A is a region of very slow variation of force with separB.tion ( it is the region dominated by the electrostatic force). Between these two regions there exists a transition area in which, in most systems studied, a phase separation of lipids into fractions containing different amounts of charged groups, was observed. A qualitative analysis showed that our results were v/ell described by the simple electrostatic double -le.yer theory. For quantitative agreement between measured and calculated force curves however, the charge density for the calculations had to be taken as half of that given by the number density of charged lipids present in the lecithin bilayers. It is not clear at the moment what causes such low apparent degree of ionization among the charged head groups, and further study is needed in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution structure of cupiennin 1a, a 35 residue, basic antibacterial peptide isolated from the venom of the spider Cupiennius salei, has been determined by nuclear magnetic resonance (NMR) spectroscopy. The peptide was found to adopt a helix−hinge−helix structure in a membrane mimicking solvent. The hinge may play a role in allowing the amphipathic N-terminal helix and polar C-terminal helix to orient independently upon membrane binding, in order to achieve maximal antibacterial efficacy. Solid-state 31P and 2H NMR was used to further study the effects of cupiennin 1a on the dynamic properties of lipid membranes, using zwitterionic chain deuterated dimyristoylphosphatidylcholine (d54-DMPC) and anionic dimyristoylphosphatidylglycerol (DMPG) multilamellar vesicles. In d54-DMPC alone, cupiennin 1a caused a decrease in the 31P chemical shift anisotropy, indicating some interaction with the lipid head groups, and a decrease in order over the entire acyl chain. In contrast, for the mixed (d54-DMPC/DMPG) lipid system cupiennin 1a appeared to induce lateral separation of the two lipids as evidenced by the 31P spectra, in which the peptide preferentially interacted with DMPG. Little effect was observed on the deuterated acyl chain order parameters in the d54-DMPC/DMPG model membranes. Furthermore, 31P NMR relaxation measurements confirmed a differential effect on the lipid motions depending upon the membrane composition. Therefore, subtle differences are likely in the mechanism by which cupiennin 1a causes membrane lysis in either prokaryotic or eukaryotic cells, and may explain the specific spectrum of activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study examined questions concerning differences in the acyl composition of membrane phospholipids that have been linked to the faster rates of metabolic processes in endotherms versus ectotherms. In liver, kidney, heart and brain of the ectothermic reptile, Trachydosaurus rugosus, and the endothermic mammal, Rattus norvegicus, previous findings of fewer unsaturates but a greater unsaturation index (UI) in membranes of the mammal versus those of the reptile were confirmed. Moreover, the study showed that the distribution of phospholipid head-group classes was similar in the same tissues of the reptile and mammal and that the differences in acyl composition were present in all phospholipid classes analysed, suggesting a role for the physical over the chemical properties of membranes in determining the faster rates of metabolic processes in endotherms. The most common phosphatidylcholine (PC) molecules present in all tissues (except brain) of the reptile were 16:0/18:1, 16:0/18:2, 18:0/18:2, 18:1/18:1 and 18:1/18:2, whereas arachidonic acid (20:4), containing PCs 16:0/ 20: 4, 18: 0/ 20: 4, were the common molecules in the mammal. The most abundant phosphatidylethanolamines ( PE) used in the tissue of the reptile were 18:0/18:2, 18:0/20:4, 18:1/18:1, 18:1/18:2 and 18:1/20:4, compared to 16: 0/ 18: 2, 16: 0/ 20: 4, 16: 0/ 22: 6, 18: 0/ 20: 4, 18: 0/ 22: 6 and 18:1/20: 4 in the mammal. UI differences were primarily due to arachidonic acid found in both PC and PEs, whereas docosahexaenoic acid (22:6) was a lesser contributor mainly within PEs and essentially absent in the kidney. The phospholipid composition of brain was more similar in the reptile and mammal compared to those of other tissues.