145 resultados para PHEROMONES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A likely pathway to the sex pheromones of Bactrocera oleae (olive fruit-fly) is presented, based mainly on feeding experiments with deuterium labelled precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregations of Frankliniella schultzei males were observed on the corollas of Hibiscus rosasinensis and Gossypium hirsutum flowers in southeast Queensland. Aggregations were seen only on the upper surfaces of corollas but may have occurred on other flower parts, which were hidden from view. Conspecific females entered aggregations and a small proportion of them mated [18% (n = 163), H. rosasinensis; 30% (n = 181), G. hirsutum]. Most females (87 and 72%, respectively) that did not mate in aggregations walked to other flower parts. Behavior was difficult to observe on these parts, but mating was sometimes observed there. The number of females that landed within aggregations on the upper surfaces of both H. rosasinensis and G. hirsutum corollas was highly correlated with the number of males (r = 0.88, r = 0.93, respectively; P < 0.001). Significantly more mating pairs were observed in high-density aggregations (mean +/- SE, 1.10 +/- 0.22 and 4.44 +/- 0.48, respectively) than in low-density aggregations (0.37 +/- 0.11 and 1.67 +/- 0.29, respectively) (P < 0.05) on flowers of both species. More F. schultzei females were attracted to sticky traps baited with live conspecific males set among flowering Ipomoea indica (mean +/- SE, 8.83 +/- 0.32) and G. hirsutum (10.90 +/- 0.79) plants than to control traps (0.10 +/- 0.05 and 0.70 +/- 0.25, respectively)( P < 0.05), presumably in response to male-produced pheromones. Significantly more females were attracted to traps with high male densities than to traps with low densities. We found no statistical evidence that aggregation size influenced mating success (proportion males that mated). Mating success, however, should be evaluated with respect to mating on all flower parts and not just the upper surfaces of corollas. The results of this study constitute the first behavioral evidence for an attractant sex pheromone in thrips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrolytic kinetic resolution (HKR) of functionalised epoxides using (salen)Co(OAc) complexes provides enantiomerically enriched epoxides and diols, which have been transformed into important insect sex pheromones. In this general approach, (-)-(R)- and (+)-(S)-10-methyldodecyl acetates from the smaller tea tortrix moth were obtained, as was (-)-(R)-10-methyltridecan-2-one from the southern corn rootworm. The (S)-epoxide obtained from undec-1-en-6-yne was transformed to (-)-(R)-(Z)-undec-6-en-2-ol (Nostrenol) from ant-lions. HKR of appropriate bisepoxides was also investigated, and transformations of the resulting bisepoxides and epoxydiols provided (-)-(1R,7R)-1,7-dimethylnonylpropanoate from corn rootworms, (-)-(6R,12R)-6,12-dimethylpentadecan-2-one from the female banded cucumber beetle, and (-)-(2S,11S)-2,11-diacetoxytridecane and (+)-(2S,12S)-2,12-diacetoxytridecane from female pea-midges. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient (12 steps, 12% overallyield) and stereoselective total synthesis of (±)-serricornine (1) the sex pheromone of the cigarette beetle (Lasioderma serricornine F) is described. The preparation of intermediate 5, which encompasses the proper relative configuration of three contiguous chiral centers of (±)-invictolide, (3), is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems. EMBO reports advance online publication 13 September 2013; doi:10.1038/embor.2013.140.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, four populations of Lutzomyia longipalpis each producing different sex pheromones are recognised. It has been suggested that these chemotype populations represent true sibling species. In this study we present the results of an analysis, by coupled gas cromotography - mass spectrometry, of the pheromones of males L. longipalpis from two different municipalities of the state of São Paulo. Our study showed that L. longipalpis from these two municipalities produced different sex pheromones from each other. This coupled with the remarkable difference between the epidemiological situation in Araçatuba and Espírito Santo do Pinhal, suggests that the (S)-9-methylgermacrene-B and cembrene-1 populations may have different vectorial capacities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queens and workers in social insect colonies can differ in reproductive goals such as colony-level sex allocation and production of males by workers. That the presence of queen(s) often seems to affect worker behaviour in situations of potential conflict has given rise to the idea of queen control over reproduction. In small colonies queen control is possible via direct aggression against workers, but in large colonies queens cannot be effectively aggressive towards all the workers. This, plus evidence that queen-produced chemicals affect worker behaviour, has led to the conclusion that physical intimidation has been replaced by pheromonal queen control, whereby queen(s) chemically manipulate workers into behaving in ways that increase the queen's fitness at the worker's expense. It is argued in this paper, however, that pheromonal queen control has never conclusively been demonstrated and is evolutionarily difficult to justify. Proposed examples of pheromonal control are more likely to be honest signals, with workers' responses increasing their own inclusive fitness. A series of experimental and field studies in which positive results would give prima facie evidence for pheromonal queen control is suggested. Finally, three terms are defined: (1) pheromonal queen control for workers or subordinate queens being chemically manipulated into acting against their own best interests; (2) pheromonal queen signal for situations where workers or subordinate queens react to queen pheromones in ways that increase their, and possibly the queens', inclusive fitness; and (3) pheromonal queen effect where changes in the workers' or subordinate queens' behaviour have an unknown consequence on their inclusive fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chez les mammifères, les phéromones sont des molécules clés dans la régulation des comportements sociaux au sein d'une espèce. Chez la souris, la détection de ces molécules se fait dans l'organe voméronasal (VNO] et implique le canal TRPC2 afin de dépolariser les neurones. Des différences de comportement entre des souris Trpc2-/- et des souris sans VNO suggèrent l'implication d'une autre protéine effectrice dans la voie de signalisation des phéromones. L'hypothèse étant que cette protéine formerait un canal hétéromérique avec TRPC2. CNGA4 est une protéine sans fonction connue dans le VNO des rongeurs. Elle appartient à la famille des protéines CNG qui joue un rôle important dans différentes voies de signalisation comme la vision ou l'olfaction. Etant donné sa présence dans le VNO, son rôle inconnu dans cet organe et son rôle important dans de nombreuses voies de signalisation, nous avons décidé d'étudier CNGA4 afin de connaître sa localisation, ses propriétés ou encore sa structure. Nous avons découvert que CNGA4 est exprimée dans les axons, les neurones immatures ainsi que sur les microvillosités des neurones de VNO. A l'aide de souris portant une version non fonctionnelle de CNGA4, nous avons pu montrer que cette protéine joue un rôle majeur dans la voie de signalisation des phéromones. Ainsi, les neurones du VNO portant une version non fonctionnelle de CNGA4 répondent moins fréquemment aux phéromones et par conséquent les phéromones activent également moins de neurones dans le bulbe olfactif accessoire, premier relais du VNO avec le cortex. Cette détection défaillante se traduit par une absence d'agressivité des souris mutantes ainsi que par une incapacité de ces souris à discriminer le sexe de leur conspécifique. Etant donné les propriétés similaires de CNGA4 et de TRPC2, nous avons supposé que les deux protéines pourraient interagir. Cette hypothèse a été confortée par l'observation que CNGA4 n'est plus exprimée dans les microvillosités du VNO des souris Trpc2-/-. A l'aide d'expériences d'expression hétérologue, nous avons pu observer que les deux protéines interagissent et forment un canal activé par un analogue du diacylglycérol suggérant que ce canal est fonctionnel. Ces résultats indiquent que CNGA4 formerait un canal hétéromérique avec TRPC2 et aurait dans ce canal une fonction modulatrice. Des expériences complémentaires sont nécessaires afin de connaître le rôle de chacune de ces protéines dans la voie de signalisation des phéromones. Sensing pheromones: a role for the CNGA4 and TRPC2 proteins Mammalian pheromones are key chemical signals in the regulation of intraspecies social behaviors. Detection of these pheromones, which takes place in sensory neurons of the vomeronasal organ (VNO), implies the activation of the transient receptor potential canonical channel 2 (TRPC2) as the final effector. Interestingly, discrepancies between Trpc2 /- mice and mice lacking a VNO suggest the implication of another protein in the pheromone signaling pathway. This protein could either form a heteromeric channel with TRPC2 or a separate homomeric ion channel. The cyclic nucleotide-gated channel subunit CNGA4 is also expressed in the rodent VNO but its role and properties in this organ remain unknown. CNGA4 belongs to the CNG channel family which is playing an important role in different sensory pathways such as in light and odorant detection. We thus decided to study the role of the CNGA4 protein in the mouse VNO. We found CNGA4 to be expressed in axons, dendrites and in the sensory microvilli. Using mice bearing a non-functional form of CNGA4 we further demonstrated the importance of the CNGA4 protein for the pheromone signaling pathway as neurons from mutant mice were responding less frequently to chemosensory cues. As a result, mutant mice displayed a non-aggressive behavior and an impaired sexual discrimination ability. Based on the CNGA4 localization and its role in the pheromone signaling pathway we hypothesized a possible interaction between CNGA4 and TRPC2 forming a heteromeric channel. First evidences for this interaction came from the absence of CNGA4 expression in the sensory microvilli of Trpc2-/- mice. Second, using transfected HEK cells as an expression system we could observe that CNGA4 and TRPC2 interact and translocate to the plasma membrane. Perfusion of a DAG analogue on co-transfected HEK cells resulted in a strong calcium entry suggesting that the two proteins form a functional channel. These results might suggest a modulatory role for CNGA4 in a heteromeric TRPC2+CNGA4 ion channel. Further experiments will give more insights on the combined role of these transduction ion channels in pheromone detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the"female calling plus male seduction" system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Methodology/Principal Findings: Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. Conclusions/Significance: This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)